Robust Pose Estimation for Noncooperative Spacecraft Under Rapid Inter-Frame Motion: A Two-Stage Point Cloud Registration Approach
This paper addresses the challenge of robust pose estimation for spacecraft under rapid inter-frame motion, proposing a two-stage point cloud registration framework. The first stage computes coarse pose estimation by leveraging Fast Point Feature Histogram (FPFH) descriptors with random sample and c...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Remote Sensing |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-4292/17/11/1944 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper addresses the challenge of robust pose estimation for spacecraft under rapid inter-frame motion, proposing a two-stage point cloud registration framework. The first stage computes coarse pose estimation by leveraging Fast Point Feature Histogram (FPFH) descriptors with random sample and consensus (RANSAC) for correspondence matching, effectively handling significant positional displacements. The second stage refines the solution through geometry-aware fine registration using raw point cloud data, enhancing precision through a multi-scale iterative ICP-like framework. To validate the approach, we simulate time-of-flight (ToF) sensor measurements by rendering NASA’s public 3D spacecraft models and obtain 3D point clouds by back-projecting the depth measurements to 3D space. Comprehensive experiments demonstrate superior performance over several state-of-the-art methods in both accuracy and robustness under rapid inter-frame motion scenarios. The dual-stage architecture proves effective in maintaining tracking continuity while mitigating error accumulation from fast relative motion, showing promise for autonomous spacecraft proximity operations. |
|---|---|
| ISSN: | 2072-4292 |