Insights into mungbean defense response to Cercospora leaf spot based on transcriptome analysis

Abstract Several mungbean (Vigna radiata (L.) Wilczek) cultivars are susceptible to Cercospora leaf spot (CLS) caused by Cercospora canescens Ellis & Martin, and it is necessary to explore resistance sources and understand resistance mechanisms. However, the CLS resistance mechanisms have not ye...

Full description

Saved in:
Bibliographic Details
Main Authors: Sukanya Inthaisong, Pakpoom Boonchuen, Tana Jaichopsanthia, Pongpan Songwattana, Apinya Khairum, Witsarut Chueakhunthod, Akkawat Tharapreuksapong, Panlada Tittabutr, Neung Teaumroong, Piyada Alisha Tantasawat
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-024-84787-1
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Several mungbean (Vigna radiata (L.) Wilczek) cultivars are susceptible to Cercospora leaf spot (CLS) caused by Cercospora canescens Ellis & Martin, and it is necessary to explore resistance sources and understand resistance mechanisms. However, the CLS resistance mechanisms have not yet been explored. The response to CLS revealed significantly different disease severity scores in both mungbean genotypes. Hypersensitive response (HR) started to appear at 2 days after inoculation (DAI) in SUPER5 but was never observed in CN84-1. SUPER5 exhibited fewer and smaller lesions than CN84-1 during CLS infection, resulting in SUPER5 being resistant while CN84-1 was susceptible to CLS. In this study, RNA sequencing (RNA-seq) analysis was used to unravel the mechanisms of resistance to CLS in a resistant line (SUPER5) and a susceptible variety (CN84-1) upon CLS infection. A total of 9510 DEGs including 4615 up-regulated and 4895 down-regulated genes were revealed. Of these 3242 and 1027 genes were uniquely up-regulated only in the SUPER5 and CN84-1, respectively, while 2902 and 734 genes were down-regulated only in SUPER5 and CN84-1, respectively. The 843 DEGs were enriched in biological processes mainly associated with plant defense responses, defense response to fungus, protein phosphorylation and response to chitin in Gene Ontology (GO) terms analysis. KEGG pathway analysis showed that these genes were represented in plant-pathogen interaction, the MAPK signaling pathway, plant hormone signal transduction, and cell wall component biosynthesis in response to the CLS infection specifically in SUPER5. In addition, the qRT-PCR was used to analyze the expression pattern of 22 candidate DEGs belonging to pathogenesis related (PR) proteins, resistance (R) proteins, transcription factors, hypersensitive response (HR), and the essential genes involved in cell wall activity during CLS-infected V. radiata. It was found that the expression of these genes was consistent with the RNA-seq analysis, showing a highly significant correlation with a coefficient of 0.7163 (p < 0.01). The co-expression network illustrated the interactions among these genes, which were involved in multiple functions related to the defense response. Interestingly, the ones encoding PR-2, thaumatin, peroxidase, defensin, RPM1, pectinesterase, chalcone synthase, auxin efflux carrier, and transcription factors (Pti1, Pti5, Pti6 and WRKY40) were highly significantly up-regulated in SUPER5 but not in CN84-1 upon CLS infection, suggesting that they might be involved in the CLS resistance mechanisms. Moreover, SUPER5 was found to have higher β-1,3-glucanase and chitinase activity levels than CN84-1. Our findings contribute to an understanding of the CLS resistance mechanisms and may advocate the development of more effective disease management approaches.
ISSN:2045-2322