I.S.G.E.: An Integrated Spatial Geotechnical and Geophysical Evaluation Methodology for Subsurface Investigations

A new Integrated Spatial Geophysical and Geotechnical Evaluation (I.S.G.E) methodology has been developed to estimate the spatial distribution of geotechnical parameters using high-resolution geophysical methods. The proposed algorithm is based on fuzzy logic, and the final output is the prediction...

Full description

Saved in:
Bibliographic Details
Main Authors: Christos Orfanos, Konstantinos Leontarakis, George Apostolopoulos, Ioannis E. Zevgolis, Bojan Brodic
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Geosciences
Subjects:
Online Access:https://www.mdpi.com/2076-3263/15/7/264
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new Integrated Spatial Geophysical and Geotechnical Evaluation (I.S.G.E) methodology has been developed to estimate the spatial distribution of geotechnical parameters using high-resolution geophysical methods. The proposed algorithm is based on fuzzy logic, and the final output is the prediction of the 2D or 3D distribution of a geotechnical parameter within a survey area. The main advantage of the developed I.S.G.E tool is that it can propagate sparse geotechnical or point information from 1D to 2D or even 3D space through a fully automatic, unbiased statistical procedure. In this study, I.S.G.E. is implemented and evaluated first using synthetic data and, afterwards, in field condition applications. The automatically derived 3D models, depicting the spatial distribution of specific geotechnical parameters, provide engineers with an additional interpretation tool for better understanding the subsurface conditions of a survey area.
ISSN:2076-3263