SMOTE vs. SMOTEENN: A Study on the Performance of Resampling Algorithms for Addressing Class Imbalance in Regression Models
Class imbalance is a prevalent challenge in machine learning that arises from skewed data distributions in one class over another, causing models to prioritize the majority class and underperform on the minority classes. This bias can significantly undermine accurate predictions in real-world scenar...
Saved in:
Main Authors: | Gazi Husain, Daniel Nasef, Rejath Jose, Jonathan Mayer, Molly Bekbolatova, Timothy Devine, Milan Toma |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Algorithms |
Subjects: | |
Online Access: | https://www.mdpi.com/1999-4893/18/1/37 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Advanced Fraud Detection: Leveraging K-SMOTEENN and Stacking Ensemble to Tackle Data Imbalance and Extract Insights
by: Nurafni Damanik, et al.
Published: (2025-01-01) -
Machine Learning Algorithms Analysis of Synthetic Minority Oversampling Technique (SMOTE): Application to Credit Default Prediction
by: Emmanuel de-Graft Johnson Owusu-Ansah, et al.
Published: (2024-12-01) -
Improving Model Performance for Predicting Exfiltration Attacks Through Resampling Strategies
by: Arif Rahman Hakim, et al.
Published: (2025-01-01) -
MKC-SMOTE: A Novel Synthetic Oversampling Method for Multi-Class Imbalanced Data Classification
by: Jiao Wang, et al.
Published: (2024-01-01) -
A stacked ensemble approach with resampling techniques for highly effective fraud detection in imbalanced datasets
by: Idongesit E. Eteng, et al.
Published: (2025-02-01)