HoloGaussian Digital Twin: Reconstructing 3D Scenes with Gaussian Splatting for Tabletop Hologram Visualization of Real Environments

Several studies have explored the use of hologram technology in architecture and urban design, demonstrating its feasibility. Holograms can represent 3D spatial data and offer an immersive experience, potentially replacing traditional methods such as physical 3D and offering a promising alternative...

Full description

Saved in:
Bibliographic Details
Main Authors: Tam Le Phuc Do, Jinwon Choi, Viet Quoc Le, Philippe Gentet, Leehwan Hwang, Seunghyun Lee
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/16/23/4591
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Several studies have explored the use of hologram technology in architecture and urban design, demonstrating its feasibility. Holograms can represent 3D spatial data and offer an immersive experience, potentially replacing traditional methods such as physical 3D and offering a promising alternative to mixed-reality display technologies. Holograms can visualize realistic scenes such as buildings, cityscapes, and landscapes using the novel view synthesis technique. This study examines the suitability of spatial data collected through the Gaussian splatting method for tabletop hologram visualization. Recent advancements in Gaussian splatting algorithms allow for real-time spatial data collection of a higher quality compared to photogrammetry and neural radiance fields. Both hologram visualization and Gaussian splatting share similarities in that they recreate 3D scenes without the need for mesh reconstruction. In this research, unmanned aerial vehicle-acquired primary image data were processed for 3D reconstruction using Gaussian splatting techniques and subsequently visualized through holographic displays. Two experimental environments were used, namely, a building and a university campus. As a result, 3D Gaussian data have proven to be an ideal spatial data source for hologram visualization, offering new possibilities for real-time motion holograms of real environments and digital twins.
ISSN:2072-4292