On Properties of a Regular Simplex Inscribed into a Ball
Let $B$ be a Euclidean ball in ${\mathbb R}^n$ and let $C(B)$ be a space of continuos functions $f:B\to{\mathbb R}$ with the uniform norm $\|f\|_{C(B)}:=\max_{x\in B}|f(x)|.$ By $\Pi_1\left({\mathbb R}^n\right)$ we mean a set of polynomials of degree $\leq 1$, i.e., a set of linear functions upon $...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Yaroslavl State University
2021-06-01
|
| Series: | Моделирование и анализ информационных систем |
| Subjects: | |
| Online Access: | https://www.mais-journal.ru/jour/article/view/1487 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|