Impact of climate change on rice growth and yield in China: Analysis based on climate year type

Climate change threatens China’s rice production, making it crucial to assess the impact of climate change and climate year type (CYT) on rice production across regions to safeguard food security. The impact of climate change under nine CYTs with different combinations of temperature and precipitati...

Full description

Saved in:
Bibliographic Details
Main Authors: Lunche Wang, Danhua Zhong, Xinxin Chen, Zigeng Niu, Qian Cao
Format: Article
Language:English
Published: Elsevier 2024-12-01
Series:Geography and Sustainability
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2666683924000622
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Climate change threatens China’s rice production, making it crucial to assess the impact of climate change and climate year type (CYT) on rice production across regions to safeguard food security. The impact of climate change under nine CYTs with different combinations of temperature and precipitation on two rice cropping systems, including single rice and double rice (early and late rice) was evaluated. The results indicate that: (1) the Northeast region was expected to undergo the greatest warming of 2.03–2.48 °C, and future climate conditions would be dominated by Warm-Humid, Warm-Normal, and Warm-Dry CYTs across all regions. (2) Climate change would significantly shorten anthesis days after sowing and maturity days after sowing of single rice by 6–12 days and 9–24 days, with little change observed for late rice (< 1 day). Late rice yield suffered more from climate change compared to single and early rice yield, declining by 8.8 %–16.13 %. (3) Different CYTs exhibited varying impacts on rice yields. Yields were projected to decrease by approximately 4.765 % to 18.645 % in Warm-Humid, Warm-Normal, and Warm-Dry CYTs. Conversely, the Northeast region was anticipated to experience an increase in yield. (4) Relationships between rice yield and meteorological factors varied by region, variety, and CYT. Among the nine CYTs, high killing degree days, mean daily temperature, mean solar radiation and warm spell duration index were the main factors influencing changes in rice yield, explaining nearly 80 % of yield change. Our results would help to develop adaptation strategies in different regions and rice cropping systems.
ISSN:2666-6839