Discriminador binario de imaginación visual a partir de señales EEG basado en redes neuronales convolucionales

Las interfaces cerebro-máquina (Brain-Computer Intarface, BCI, en inglés) son una tecnología que permite la comunicación directa entre el cerebro y el mundo exterior sin necesidad de utilizar el sistema nervioso periferico. La mayoría de sistemas BCI se centran en la utilización de la imaginación mo...

Full description

Saved in:
Bibliographic Details
Main Authors: Fabio Ricardo Llorella, Eduardo Iáñez, José Maria Azorín, Gustavo Patow
Format: Article
Language:Spanish
Published: Universitat Politècnica de València 2021-12-01
Series:Revista Iberoamericana de Automática e Informática Industrial RIAI
Subjects:
Online Access:https://polipapers.upv.es/index.php/RIAI/article/view/14987
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Las interfaces cerebro-máquina (Brain-Computer Intarface, BCI, en inglés) son una tecnología que permite la comunicación directa entre el cerebro y el mundo exterior sin necesidad de utilizar el sistema nervioso periferico. La mayoría de sistemas BCI se centran en la utilización de la imaginación motora, los potenciales evocados o los ritmos corticales lentos. En este trabajo se ha estudiado la posibilidad de utilizar la imaginación visual para construir un discriminador binario (brain-switch, en inglés). Concretamente, a partir del registro de señales EEG de siete personas mientras imaginaban siete figuras geométricas, se ha desarrollado un BCI basado en redes neuronales convolucionales y en la densidad de potencia espectral en la banda α (8-12 Hz), que ha conseguido distinguir entre la imaginación de una figura geométrica cualquiera y el relax, con un acierto promedio del 91 %, con un valor Kappa de Cohen de 0.77 y un porcentaje de falsos positivos del 9 %.
ISSN:1697-7912
1697-7920