MXene-Ti3C2Tx-Based Neuromorphic Computing: Physical Mechanisms, Performance Enhancement, and Cutting-Edge Computing

Highlights This review reveals the advantages of MXene-Ti3C2Tx for neuromorphic devices, classifies the core physical mechanisms, and outlines strategies to drive targeted optimization and future innovation. The review outlines three key engineering strategies: doping engineering, interfacial engine...

Full description

Saved in:
Bibliographic Details
Main Authors: Kaiyang Wang, Shuhui Ren, Yunfang Jia, Xiaobing Yan, Lizhen Wang, Yubo Fan
Format: Article
Language:English
Published: SpringerOpen 2025-05-01
Series:Nano-Micro Letters
Subjects:
Online Access:https://doi.org/10.1007/s40820-025-01787-0
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849342338434859008
author Kaiyang Wang
Shuhui Ren
Yunfang Jia
Xiaobing Yan
Lizhen Wang
Yubo Fan
author_facet Kaiyang Wang
Shuhui Ren
Yunfang Jia
Xiaobing Yan
Lizhen Wang
Yubo Fan
author_sort Kaiyang Wang
collection DOAJ
description Highlights This review reveals the advantages of MXene-Ti3C2Tx for neuromorphic devices, classifies the core physical mechanisms, and outlines strategies to drive targeted optimization and future innovation. The review outlines three key engineering strategies: doping engineering, interfacial engineering, and structural engineering, while also providing comprehensive guidance for material and device improvement. MXene-Ti3C2Tx-based devices demonstrate groundbreaking potential in next-generation computing, such as near-sensor computing and in-sensor computing, enabling faster and more energy-efficient data processing directly at the sensor level.
format Article
id doaj-art-f1fa6d58224c46e19b1eb5f77ea46adf
institution Kabale University
issn 2311-6706
2150-5551
language English
publishDate 2025-05-01
publisher SpringerOpen
record_format Article
series Nano-Micro Letters
spelling doaj-art-f1fa6d58224c46e19b1eb5f77ea46adf2025-08-20T03:43:26ZengSpringerOpenNano-Micro Letters2311-67062150-55512025-05-0117115210.1007/s40820-025-01787-0MXene-Ti3C2Tx-Based Neuromorphic Computing: Physical Mechanisms, Performance Enhancement, and Cutting-Edge ComputingKaiyang Wang0Shuhui Ren1Yunfang Jia2Xiaobing Yan3Lizhen Wang4Yubo Fan5Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang UniversityCollege of Electronic Information and Optical Engineering, Nankai UniversityCollege of Electronic Information and Optical Engineering, Nankai UniversityKey Laboratory of Brain-Like Neuromorphic Devices Systems of Hebei Province College of Electron and Information Engineering, Jiaruiyuan Biochip Research Center of Hebei University, Hebei UniversityMedical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang UniversityMedical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang UniversityHighlights This review reveals the advantages of MXene-Ti3C2Tx for neuromorphic devices, classifies the core physical mechanisms, and outlines strategies to drive targeted optimization and future innovation. The review outlines three key engineering strategies: doping engineering, interfacial engineering, and structural engineering, while also providing comprehensive guidance for material and device improvement. MXene-Ti3C2Tx-based devices demonstrate groundbreaking potential in next-generation computing, such as near-sensor computing and in-sensor computing, enabling faster and more energy-efficient data processing directly at the sensor level.https://doi.org/10.1007/s40820-025-01787-0Neuromorphic deviceMXene-Ti3C2TxPhysical mechanismsPerformance improvementCutting-edge computing
spellingShingle Kaiyang Wang
Shuhui Ren
Yunfang Jia
Xiaobing Yan
Lizhen Wang
Yubo Fan
MXene-Ti3C2Tx-Based Neuromorphic Computing: Physical Mechanisms, Performance Enhancement, and Cutting-Edge Computing
Nano-Micro Letters
Neuromorphic device
MXene-Ti3C2Tx
Physical mechanisms
Performance improvement
Cutting-edge computing
title MXene-Ti3C2Tx-Based Neuromorphic Computing: Physical Mechanisms, Performance Enhancement, and Cutting-Edge Computing
title_full MXene-Ti3C2Tx-Based Neuromorphic Computing: Physical Mechanisms, Performance Enhancement, and Cutting-Edge Computing
title_fullStr MXene-Ti3C2Tx-Based Neuromorphic Computing: Physical Mechanisms, Performance Enhancement, and Cutting-Edge Computing
title_full_unstemmed MXene-Ti3C2Tx-Based Neuromorphic Computing: Physical Mechanisms, Performance Enhancement, and Cutting-Edge Computing
title_short MXene-Ti3C2Tx-Based Neuromorphic Computing: Physical Mechanisms, Performance Enhancement, and Cutting-Edge Computing
title_sort mxene ti3c2tx based neuromorphic computing physical mechanisms performance enhancement and cutting edge computing
topic Neuromorphic device
MXene-Ti3C2Tx
Physical mechanisms
Performance improvement
Cutting-edge computing
url https://doi.org/10.1007/s40820-025-01787-0
work_keys_str_mv AT kaiyangwang mxeneti3c2txbasedneuromorphiccomputingphysicalmechanismsperformanceenhancementandcuttingedgecomputing
AT shuhuiren mxeneti3c2txbasedneuromorphiccomputingphysicalmechanismsperformanceenhancementandcuttingedgecomputing
AT yunfangjia mxeneti3c2txbasedneuromorphiccomputingphysicalmechanismsperformanceenhancementandcuttingedgecomputing
AT xiaobingyan mxeneti3c2txbasedneuromorphiccomputingphysicalmechanismsperformanceenhancementandcuttingedgecomputing
AT lizhenwang mxeneti3c2txbasedneuromorphiccomputingphysicalmechanismsperformanceenhancementandcuttingedgecomputing
AT yubofan mxeneti3c2txbasedneuromorphiccomputingphysicalmechanismsperformanceenhancementandcuttingedgecomputing