A simulation study of thermal and hydraulic characteristics mini-channel circular heat sink: Effect of L-shaped multi-channel arrangement on flow maldistribution

Mini channel cooling represents a highly effective methodology for the dissipation of thermal energy in electronic systems. The employment of a circular heat sink, characterized by novel configurations that incorporate various arrangements of innovative L-channel passages, facilitates the enhancemen...

Full description

Saved in:
Bibliographic Details
Main Author: Haider Ali Hussein
Format: Article
Language:English
Published: Elsevier 2025-01-01
Series:Case Studies in Thermal Engineering
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2214157X24016861
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841555717376442368
author Haider Ali Hussein
author_facet Haider Ali Hussein
author_sort Haider Ali Hussein
collection DOAJ
description Mini channel cooling represents a highly effective methodology for the dissipation of thermal energy in electronic systems. The employment of a circular heat sink, characterized by novel configurations that incorporate various arrangements of innovative L-channel passages, facilitates the enhancement of thermal performance in circular mini channel heat sinks by mitigating the incidence of non-uniform coolant distribution. In this investigation, six distinct circular mini channel heat sinks were subjected to testing. Computational simulations were employed to assess their efficacy. The simulation results indicated that the innovative L-shaped channel passages exhibited superior heat transfer capabilities when compared to traditional (rectangular) channels. An increase in the Reynolds number from 491 to 983 corresponds with an enhancement in the performance index and a reduction in the maximum hotspot temperature, thereby leading to a decrease in the maximum thermal resistance. The L-channel passages for design (JMMLCCHS) demonstrated the most significant efficacy in diminishing coolant misdistribution and enhancing the performance index by a factor of 1.194 relative to the conventional design. The JMMLCCHS configuration recorded the most pronounced reduction in maximum thermal resistance, yielding a value of 0.33136 °C/W in contrast to 0.40587 °C/W for the traditional rectangular channel (TMMRCCHS). Moreover, the JMMLCCHS design exhibited the most substantial decrease in hotspot temperature, achieving an 8 °C reduction compared to the conventional design (TMMRCCHS) at a Reynolds number of 983.
format Article
id doaj-art-ef61ebb37df34cfc867750d15b2f289a
institution Kabale University
issn 2214-157X
language English
publishDate 2025-01-01
publisher Elsevier
record_format Article
series Case Studies in Thermal Engineering
spelling doaj-art-ef61ebb37df34cfc867750d15b2f289a2025-01-08T04:52:48ZengElsevierCase Studies in Thermal Engineering2214-157X2025-01-0165105655A simulation study of thermal and hydraulic characteristics mini-channel circular heat sink: Effect of L-shaped multi-channel arrangement on flow maldistributionHaider Ali Hussein0Mechanical Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, IraqMini channel cooling represents a highly effective methodology for the dissipation of thermal energy in electronic systems. The employment of a circular heat sink, characterized by novel configurations that incorporate various arrangements of innovative L-channel passages, facilitates the enhancement of thermal performance in circular mini channel heat sinks by mitigating the incidence of non-uniform coolant distribution. In this investigation, six distinct circular mini channel heat sinks were subjected to testing. Computational simulations were employed to assess their efficacy. The simulation results indicated that the innovative L-shaped channel passages exhibited superior heat transfer capabilities when compared to traditional (rectangular) channels. An increase in the Reynolds number from 491 to 983 corresponds with an enhancement in the performance index and a reduction in the maximum hotspot temperature, thereby leading to a decrease in the maximum thermal resistance. The L-channel passages for design (JMMLCCHS) demonstrated the most significant efficacy in diminishing coolant misdistribution and enhancing the performance index by a factor of 1.194 relative to the conventional design. The JMMLCCHS configuration recorded the most pronounced reduction in maximum thermal resistance, yielding a value of 0.33136 °C/W in contrast to 0.40587 °C/W for the traditional rectangular channel (TMMRCCHS). Moreover, the JMMLCCHS design exhibited the most substantial decrease in hotspot temperature, achieving an 8 °C reduction compared to the conventional design (TMMRCCHS) at a Reynolds number of 983.http://www.sciencedirect.com/science/article/pii/S2214157X24016861L-shaped channel arrangementsCircular heat sinkMaldistributionMax thermal resistancePerformance index
spellingShingle Haider Ali Hussein
A simulation study of thermal and hydraulic characteristics mini-channel circular heat sink: Effect of L-shaped multi-channel arrangement on flow maldistribution
Case Studies in Thermal Engineering
L-shaped channel arrangements
Circular heat sink
Maldistribution
Max thermal resistance
Performance index
title A simulation study of thermal and hydraulic characteristics mini-channel circular heat sink: Effect of L-shaped multi-channel arrangement on flow maldistribution
title_full A simulation study of thermal and hydraulic characteristics mini-channel circular heat sink: Effect of L-shaped multi-channel arrangement on flow maldistribution
title_fullStr A simulation study of thermal and hydraulic characteristics mini-channel circular heat sink: Effect of L-shaped multi-channel arrangement on flow maldistribution
title_full_unstemmed A simulation study of thermal and hydraulic characteristics mini-channel circular heat sink: Effect of L-shaped multi-channel arrangement on flow maldistribution
title_short A simulation study of thermal and hydraulic characteristics mini-channel circular heat sink: Effect of L-shaped multi-channel arrangement on flow maldistribution
title_sort simulation study of thermal and hydraulic characteristics mini channel circular heat sink effect of l shaped multi channel arrangement on flow maldistribution
topic L-shaped channel arrangements
Circular heat sink
Maldistribution
Max thermal resistance
Performance index
url http://www.sciencedirect.com/science/article/pii/S2214157X24016861
work_keys_str_mv AT haideralihussein asimulationstudyofthermalandhydrauliccharacteristicsminichannelcircularheatsinkeffectoflshapedmultichannelarrangementonflowmaldistribution
AT haideralihussein simulationstudyofthermalandhydrauliccharacteristicsminichannelcircularheatsinkeffectoflshapedmultichannelarrangementonflowmaldistribution