A Uniform Robust Exact Differentiator Based Neuro-Fuzzy Fractional Order Sliding Mode Control for Optimal Standalone Solar Photovoltaic System

This study introduces an innovative neurofuzzy fractional-order sliding mode control approach for standalone photovoltaic systems, designed to mitigate uncertainties and disturbances caused by fluctuating environmental conditions. The method combines a fuzzy logic neural network, uniform robust exac...

Full description

Saved in:
Bibliographic Details
Main Authors: Safeer Ullah, Ahmed S. Alsafran, Ambe Harrison, Ghulam Hafeez, Abouobaida Hassan, Baheej Alghamdi, Habib Kraiem
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10823094/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841550808706973696
author Safeer Ullah
Ahmed S. Alsafran
Ambe Harrison
Ghulam Hafeez
Abouobaida Hassan
Baheej Alghamdi
Habib Kraiem
author_facet Safeer Ullah
Ahmed S. Alsafran
Ambe Harrison
Ghulam Hafeez
Abouobaida Hassan
Baheej Alghamdi
Habib Kraiem
author_sort Safeer Ullah
collection DOAJ
description This study introduces an innovative neurofuzzy fractional-order sliding mode control approach for standalone photovoltaic systems, designed to mitigate uncertainties and disturbances caused by fluctuating environmental conditions. The method combines a fuzzy logic neural network, uniform robust exact differentiator, and fractional-order sliding mode control. The neural network accurately predicts nonlinear reference voltage trajectories, whereas the differentiator estimates unmeasurable states and external disturbances. The inclusion of fractional-order control improved the adaptability and robustness of the system. The stability of the proposed approach is rigorously validated using the Lyapunov theory. MATLAB simulations and experimental results significantly improve tracking accuracy and overall system performance, providing a robust and efficient solution to optimize energy extraction in standalone PV systems.
format Article
id doaj-art-ee1a872a08fb4c10b31f299fadf65bcd
institution Kabale University
issn 2169-3536
language English
publishDate 2025-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj-art-ee1a872a08fb4c10b31f299fadf65bcd2025-01-10T00:01:31ZengIEEEIEEE Access2169-35362025-01-01134411442310.1109/ACCESS.2024.352488710823094A Uniform Robust Exact Differentiator Based Neuro-Fuzzy Fractional Order Sliding Mode Control for Optimal Standalone Solar Photovoltaic SystemSafeer Ullah0https://orcid.org/0000-0001-8017-7006Ahmed S. Alsafran1https://orcid.org/0000-0003-3669-6161Ambe Harrison2https://orcid.org/0000-0002-4353-1261Ghulam Hafeez3https://orcid.org/0000-0002-9398-9414Abouobaida Hassan4Baheej Alghamdi5https://orcid.org/0000-0002-9569-4724Habib Kraiem6https://orcid.org/0000-0003-3248-2430Department of Electrical Engineering, Quaid-e-Azam College of Engineering and Technology, Sahiwal, PakistanDepartment of Electrical Engineering, King Faisal University, Hofuf, Alahssa, Saudi ArabiaDepartment of Electrical and Electronics Engineering, University of Buea, Buea, CameroonDepartment of Electrical Engineering, University of Engineering and Technology, Mardan, PakistanLaboratory of Engineering Sciences for Energy (LABSIPE), National School of Applied Sciences (ENSA) of El Jadida, Chouaib-Doukkali University, El Jadida, MoroccoSmart Grids Research Group, Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah, Saudi ArabiaCenter for Scientific Research and Entrepreneurship, Northern Border University, Arar, Saudi ArabiaThis study introduces an innovative neurofuzzy fractional-order sliding mode control approach for standalone photovoltaic systems, designed to mitigate uncertainties and disturbances caused by fluctuating environmental conditions. The method combines a fuzzy logic neural network, uniform robust exact differentiator, and fractional-order sliding mode control. The neural network accurately predicts nonlinear reference voltage trajectories, whereas the differentiator estimates unmeasurable states and external disturbances. The inclusion of fractional-order control improved the adaptability and robustness of the system. The stability of the proposed approach is rigorously validated using the Lyapunov theory. MATLAB simulations and experimental results significantly improve tracking accuracy and overall system performance, providing a robust and efficient solution to optimize energy extraction in standalone PV systems.https://ieeexplore.ieee.org/document/10823094/Fractional order sliding moderobust controladaptive controluniform robust exact differentiatorenergy extractionphotovoltaic system
spellingShingle Safeer Ullah
Ahmed S. Alsafran
Ambe Harrison
Ghulam Hafeez
Abouobaida Hassan
Baheej Alghamdi
Habib Kraiem
A Uniform Robust Exact Differentiator Based Neuro-Fuzzy Fractional Order Sliding Mode Control for Optimal Standalone Solar Photovoltaic System
IEEE Access
Fractional order sliding mode
robust control
adaptive control
uniform robust exact differentiator
energy extraction
photovoltaic system
title A Uniform Robust Exact Differentiator Based Neuro-Fuzzy Fractional Order Sliding Mode Control for Optimal Standalone Solar Photovoltaic System
title_full A Uniform Robust Exact Differentiator Based Neuro-Fuzzy Fractional Order Sliding Mode Control for Optimal Standalone Solar Photovoltaic System
title_fullStr A Uniform Robust Exact Differentiator Based Neuro-Fuzzy Fractional Order Sliding Mode Control for Optimal Standalone Solar Photovoltaic System
title_full_unstemmed A Uniform Robust Exact Differentiator Based Neuro-Fuzzy Fractional Order Sliding Mode Control for Optimal Standalone Solar Photovoltaic System
title_short A Uniform Robust Exact Differentiator Based Neuro-Fuzzy Fractional Order Sliding Mode Control for Optimal Standalone Solar Photovoltaic System
title_sort uniform robust exact differentiator based neuro fuzzy fractional order sliding mode control for optimal standalone solar photovoltaic system
topic Fractional order sliding mode
robust control
adaptive control
uniform robust exact differentiator
energy extraction
photovoltaic system
url https://ieeexplore.ieee.org/document/10823094/
work_keys_str_mv AT safeerullah auniformrobustexactdifferentiatorbasedneurofuzzyfractionalorderslidingmodecontrolforoptimalstandalonesolarphotovoltaicsystem
AT ahmedsalsafran auniformrobustexactdifferentiatorbasedneurofuzzyfractionalorderslidingmodecontrolforoptimalstandalonesolarphotovoltaicsystem
AT ambeharrison auniformrobustexactdifferentiatorbasedneurofuzzyfractionalorderslidingmodecontrolforoptimalstandalonesolarphotovoltaicsystem
AT ghulamhafeez auniformrobustexactdifferentiatorbasedneurofuzzyfractionalorderslidingmodecontrolforoptimalstandalonesolarphotovoltaicsystem
AT abouobaidahassan auniformrobustexactdifferentiatorbasedneurofuzzyfractionalorderslidingmodecontrolforoptimalstandalonesolarphotovoltaicsystem
AT baheejalghamdi auniformrobustexactdifferentiatorbasedneurofuzzyfractionalorderslidingmodecontrolforoptimalstandalonesolarphotovoltaicsystem
AT habibkraiem auniformrobustexactdifferentiatorbasedneurofuzzyfractionalorderslidingmodecontrolforoptimalstandalonesolarphotovoltaicsystem
AT safeerullah uniformrobustexactdifferentiatorbasedneurofuzzyfractionalorderslidingmodecontrolforoptimalstandalonesolarphotovoltaicsystem
AT ahmedsalsafran uniformrobustexactdifferentiatorbasedneurofuzzyfractionalorderslidingmodecontrolforoptimalstandalonesolarphotovoltaicsystem
AT ambeharrison uniformrobustexactdifferentiatorbasedneurofuzzyfractionalorderslidingmodecontrolforoptimalstandalonesolarphotovoltaicsystem
AT ghulamhafeez uniformrobustexactdifferentiatorbasedneurofuzzyfractionalorderslidingmodecontrolforoptimalstandalonesolarphotovoltaicsystem
AT abouobaidahassan uniformrobustexactdifferentiatorbasedneurofuzzyfractionalorderslidingmodecontrolforoptimalstandalonesolarphotovoltaicsystem
AT baheejalghamdi uniformrobustexactdifferentiatorbasedneurofuzzyfractionalorderslidingmodecontrolforoptimalstandalonesolarphotovoltaicsystem
AT habibkraiem uniformrobustexactdifferentiatorbasedneurofuzzyfractionalorderslidingmodecontrolforoptimalstandalonesolarphotovoltaicsystem