Precision parameter estimation in Proton Exchange Membrane Fuel Cells using depth information enhanced Differential Evolution

Abstract Proton Exchange Membrane Fuel Cell (PEMFC) models require parameter tuning for their design and performance improvement. In this study, Depth Information-Based Differential Evolution (Di-DE) algorithm, a novel and efficient metaheuristic approach, is applied to the complex, nonlinear optimi...

Full description

Saved in:
Bibliographic Details
Main Authors: Pradeep Jangir, Absalom E. Ezugwu, Arpita, Sunilkumar P. Agrawal, Sundaram B. Pandya, Anil Parmar, G. Gulothungan, Laith Abualigah
Format: Article
Language:English
Published: Nature Portfolio 2024-11-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-024-81160-0
Tags: Add Tag
No Tags, Be the first to tag this record!