CME Magnetic Structure and IMF Preconditioning Affecting SEP Transport
Abstract Coronal mass ejections (CMEs) and solar energetic particles (SEPs) are two phenomena that can cause severe space weather effects throughout the heliosphere. The evolution of CMEs, especially in terms of their magnetic structure, and the configuration of the interplanetary magnetic field (IM...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2021-04-01
|
Series: | Space Weather |
Subjects: | |
Online Access: | https://doi.org/10.1029/2020SW002654 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1841536372725252096 |
---|---|
author | Erika Palmerio Emilia K. J. Kilpua Olivier Witasse David Barnes Beatriz Sánchez‐Cano Andreas J. Weiss Teresa Nieves‐Chinchilla Christian Möstl Lan K. Jian Marilena Mierla Andrei N. Zhukov Jingnan Guo Luciano Rodriguez Patrick J. Lowrance Alexey Isavnin Lucile Turc Yoshifumi Futaana Mats Holmström |
author_facet | Erika Palmerio Emilia K. J. Kilpua Olivier Witasse David Barnes Beatriz Sánchez‐Cano Andreas J. Weiss Teresa Nieves‐Chinchilla Christian Möstl Lan K. Jian Marilena Mierla Andrei N. Zhukov Jingnan Guo Luciano Rodriguez Patrick J. Lowrance Alexey Isavnin Lucile Turc Yoshifumi Futaana Mats Holmström |
author_sort | Erika Palmerio |
collection | DOAJ |
description | Abstract Coronal mass ejections (CMEs) and solar energetic particles (SEPs) are two phenomena that can cause severe space weather effects throughout the heliosphere. The evolution of CMEs, especially in terms of their magnetic structure, and the configuration of the interplanetary magnetic field (IMF) that influences the transport of SEPs are currently areas of active research. These two aspects are not necessarily independent of each other, especially during solar maximum when multiple eruptive events can occur close in time. Accordingly, we present the analysis of a CME that erupted on May 11, 2012 (SOL2012‐05‐11) and an SEP event following an eruption that took place on May 17, 2012 (SOL2012‐05‐17). After observing the May 11 CME using remote‐sensing data from three viewpoints, we evaluate its propagation through interplanetary space using several models. Then, we analyze in‐situ measurements from five predicted impact locations (Venus, Earth, the Spitzer Space Telescope, the Mars Science Laboratory en route to Mars, and Mars) in order to search for CME signatures. We find that all in‐situ locations detect signatures of an SEP event, which we trace back to the May 17 eruption. These findings suggest that the May 11 CME provided a direct magnetic connectivity for the efficient transport of SEPs. We discuss the space weather implications of CME evolution, regarding in particular its magnetic structure, and CME‐driven IMF preconditioning that facilitates SEP transport. Finally, this work remarks the importance of using data from multiple spacecraft, even those that do not include space weather research as their primary objective. |
format | Article |
id | doaj-art-eb07d9fd7a444044864f30852dee1293 |
institution | Kabale University |
issn | 1542-7390 |
language | English |
publishDate | 2021-04-01 |
publisher | Wiley |
record_format | Article |
series | Space Weather |
spelling | doaj-art-eb07d9fd7a444044864f30852dee12932025-01-14T16:31:28ZengWileySpace Weather1542-73902021-04-01194n/an/a10.1029/2020SW002654CME Magnetic Structure and IMF Preconditioning Affecting SEP TransportErika Palmerio0Emilia K. J. Kilpua1Olivier Witasse2David Barnes3Beatriz Sánchez‐Cano4Andreas J. Weiss5Teresa Nieves‐Chinchilla6Christian Möstl7Lan K. Jian8Marilena Mierla9Andrei N. Zhukov10Jingnan Guo11Luciano Rodriguez12Patrick J. Lowrance13Alexey Isavnin14Lucile Turc15Yoshifumi Futaana16Mats Holmström17Department of Physics University of Helsinki Helsinki FinlandDepartment of Physics University of Helsinki Helsinki FinlandESTEC European Space Agency Noordwijk the NetherlandsSTFC RAL Space Rutherford Appleton Laboratory Harwell Campus Oxfordshire UKSchool of Physics and Astronomy University of Leicester Leicester UKSpace Research Institute Austrian Academy of Sciences Graz AustriaNASA Goddard Space Flight Center Heliophysics Science Division Greenbelt MD USASpace Research Institute Austrian Academy of Sciences Graz AustriaNASA Goddard Space Flight Center Heliophysics Science Division Greenbelt MD USASolar–Terrestrial Centre of Excellence—SIDC Royal Observatory of Belgium Brussels BelgiumSolar–Terrestrial Centre of Excellence—SIDC Royal Observatory of Belgium Brussels BelgiumSchool of Earth and Space Sciences University of Science and Technology of China Hefei ChinaSolar–Terrestrial Centre of Excellence—SIDC Royal Observatory of Belgium Brussels BelgiumIPAC–Spitzer California Institute of Technology Pasadena CA USARays of Space Oy Vantaa FinlandDepartment of Physics University of Helsinki Helsinki FinlandSwedish Institute of Space Physics Kiruna SwedenSwedish Institute of Space Physics Kiruna SwedenAbstract Coronal mass ejections (CMEs) and solar energetic particles (SEPs) are two phenomena that can cause severe space weather effects throughout the heliosphere. The evolution of CMEs, especially in terms of their magnetic structure, and the configuration of the interplanetary magnetic field (IMF) that influences the transport of SEPs are currently areas of active research. These two aspects are not necessarily independent of each other, especially during solar maximum when multiple eruptive events can occur close in time. Accordingly, we present the analysis of a CME that erupted on May 11, 2012 (SOL2012‐05‐11) and an SEP event following an eruption that took place on May 17, 2012 (SOL2012‐05‐17). After observing the May 11 CME using remote‐sensing data from three viewpoints, we evaluate its propagation through interplanetary space using several models. Then, we analyze in‐situ measurements from five predicted impact locations (Venus, Earth, the Spitzer Space Telescope, the Mars Science Laboratory en route to Mars, and Mars) in order to search for CME signatures. We find that all in‐situ locations detect signatures of an SEP event, which we trace back to the May 17 eruption. These findings suggest that the May 11 CME provided a direct magnetic connectivity for the efficient transport of SEPs. We discuss the space weather implications of CME evolution, regarding in particular its magnetic structure, and CME‐driven IMF preconditioning that facilitates SEP transport. Finally, this work remarks the importance of using data from multiple spacecraft, even those that do not include space weather research as their primary objective.https://doi.org/10.1029/2020SW002654coronal mass ejectionsheliophysicsinterplanetary magnetic fieldsolar energetic particlessolar windspace weather |
spellingShingle | Erika Palmerio Emilia K. J. Kilpua Olivier Witasse David Barnes Beatriz Sánchez‐Cano Andreas J. Weiss Teresa Nieves‐Chinchilla Christian Möstl Lan K. Jian Marilena Mierla Andrei N. Zhukov Jingnan Guo Luciano Rodriguez Patrick J. Lowrance Alexey Isavnin Lucile Turc Yoshifumi Futaana Mats Holmström CME Magnetic Structure and IMF Preconditioning Affecting SEP Transport Space Weather coronal mass ejections heliophysics interplanetary magnetic field solar energetic particles solar wind space weather |
title | CME Magnetic Structure and IMF Preconditioning Affecting SEP Transport |
title_full | CME Magnetic Structure and IMF Preconditioning Affecting SEP Transport |
title_fullStr | CME Magnetic Structure and IMF Preconditioning Affecting SEP Transport |
title_full_unstemmed | CME Magnetic Structure and IMF Preconditioning Affecting SEP Transport |
title_short | CME Magnetic Structure and IMF Preconditioning Affecting SEP Transport |
title_sort | cme magnetic structure and imf preconditioning affecting sep transport |
topic | coronal mass ejections heliophysics interplanetary magnetic field solar energetic particles solar wind space weather |
url | https://doi.org/10.1029/2020SW002654 |
work_keys_str_mv | AT erikapalmerio cmemagneticstructureandimfpreconditioningaffectingseptransport AT emiliakjkilpua cmemagneticstructureandimfpreconditioningaffectingseptransport AT olivierwitasse cmemagneticstructureandimfpreconditioningaffectingseptransport AT davidbarnes cmemagneticstructureandimfpreconditioningaffectingseptransport AT beatrizsanchezcano cmemagneticstructureandimfpreconditioningaffectingseptransport AT andreasjweiss cmemagneticstructureandimfpreconditioningaffectingseptransport AT teresanieveschinchilla cmemagneticstructureandimfpreconditioningaffectingseptransport AT christianmostl cmemagneticstructureandimfpreconditioningaffectingseptransport AT lankjian cmemagneticstructureandimfpreconditioningaffectingseptransport AT marilenamierla cmemagneticstructureandimfpreconditioningaffectingseptransport AT andreinzhukov cmemagneticstructureandimfpreconditioningaffectingseptransport AT jingnanguo cmemagneticstructureandimfpreconditioningaffectingseptransport AT lucianorodriguez cmemagneticstructureandimfpreconditioningaffectingseptransport AT patrickjlowrance cmemagneticstructureandimfpreconditioningaffectingseptransport AT alexeyisavnin cmemagneticstructureandimfpreconditioningaffectingseptransport AT lucileturc cmemagneticstructureandimfpreconditioningaffectingseptransport AT yoshifumifutaana cmemagneticstructureandimfpreconditioningaffectingseptransport AT matsholmstrom cmemagneticstructureandimfpreconditioningaffectingseptransport |