CME Magnetic Structure and IMF Preconditioning Affecting SEP Transport

Abstract Coronal mass ejections (CMEs) and solar energetic particles (SEPs) are two phenomena that can cause severe space weather effects throughout the heliosphere. The evolution of CMEs, especially in terms of their magnetic structure, and the configuration of the interplanetary magnetic field (IM...

Full description

Saved in:
Bibliographic Details
Main Authors: Erika Palmerio, Emilia K. J. Kilpua, Olivier Witasse, David Barnes, Beatriz Sánchez‐Cano, Andreas J. Weiss, Teresa Nieves‐Chinchilla, Christian Möstl, Lan K. Jian, Marilena Mierla, Andrei N. Zhukov, Jingnan Guo, Luciano Rodriguez, Patrick J. Lowrance, Alexey Isavnin, Lucile Turc, Yoshifumi Futaana, Mats Holmström
Format: Article
Language:English
Published: Wiley 2021-04-01
Series:Space Weather
Subjects:
Online Access:https://doi.org/10.1029/2020SW002654
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841536372725252096
author Erika Palmerio
Emilia K. J. Kilpua
Olivier Witasse
David Barnes
Beatriz Sánchez‐Cano
Andreas J. Weiss
Teresa Nieves‐Chinchilla
Christian Möstl
Lan K. Jian
Marilena Mierla
Andrei N. Zhukov
Jingnan Guo
Luciano Rodriguez
Patrick J. Lowrance
Alexey Isavnin
Lucile Turc
Yoshifumi Futaana
Mats Holmström
author_facet Erika Palmerio
Emilia K. J. Kilpua
Olivier Witasse
David Barnes
Beatriz Sánchez‐Cano
Andreas J. Weiss
Teresa Nieves‐Chinchilla
Christian Möstl
Lan K. Jian
Marilena Mierla
Andrei N. Zhukov
Jingnan Guo
Luciano Rodriguez
Patrick J. Lowrance
Alexey Isavnin
Lucile Turc
Yoshifumi Futaana
Mats Holmström
author_sort Erika Palmerio
collection DOAJ
description Abstract Coronal mass ejections (CMEs) and solar energetic particles (SEPs) are two phenomena that can cause severe space weather effects throughout the heliosphere. The evolution of CMEs, especially in terms of their magnetic structure, and the configuration of the interplanetary magnetic field (IMF) that influences the transport of SEPs are currently areas of active research. These two aspects are not necessarily independent of each other, especially during solar maximum when multiple eruptive events can occur close in time. Accordingly, we present the analysis of a CME that erupted on May 11, 2012 (SOL2012‐05‐11) and an SEP event following an eruption that took place on May 17, 2012 (SOL2012‐05‐17). After observing the May 11 CME using remote‐sensing data from three viewpoints, we evaluate its propagation through interplanetary space using several models. Then, we analyze in‐situ measurements from five predicted impact locations (Venus, Earth, the Spitzer Space Telescope, the Mars Science Laboratory en route to Mars, and Mars) in order to search for CME signatures. We find that all in‐situ locations detect signatures of an SEP event, which we trace back to the May 17 eruption. These findings suggest that the May 11 CME provided a direct magnetic connectivity for the efficient transport of SEPs. We discuss the space weather implications of CME evolution, regarding in particular its magnetic structure, and CME‐driven IMF preconditioning that facilitates SEP transport. Finally, this work remarks the importance of using data from multiple spacecraft, even those that do not include space weather research as their primary objective.
format Article
id doaj-art-eb07d9fd7a444044864f30852dee1293
institution Kabale University
issn 1542-7390
language English
publishDate 2021-04-01
publisher Wiley
record_format Article
series Space Weather
spelling doaj-art-eb07d9fd7a444044864f30852dee12932025-01-14T16:31:28ZengWileySpace Weather1542-73902021-04-01194n/an/a10.1029/2020SW002654CME Magnetic Structure and IMF Preconditioning Affecting SEP TransportErika Palmerio0Emilia K. J. Kilpua1Olivier Witasse2David Barnes3Beatriz Sánchez‐Cano4Andreas J. Weiss5Teresa Nieves‐Chinchilla6Christian Möstl7Lan K. Jian8Marilena Mierla9Andrei N. Zhukov10Jingnan Guo11Luciano Rodriguez12Patrick J. Lowrance13Alexey Isavnin14Lucile Turc15Yoshifumi Futaana16Mats Holmström17Department of Physics University of Helsinki Helsinki FinlandDepartment of Physics University of Helsinki Helsinki FinlandESTEC European Space Agency Noordwijk the NetherlandsSTFC RAL Space Rutherford Appleton Laboratory Harwell Campus Oxfordshire UKSchool of Physics and Astronomy University of Leicester Leicester UKSpace Research Institute Austrian Academy of Sciences Graz AustriaNASA Goddard Space Flight Center Heliophysics Science Division Greenbelt MD USASpace Research Institute Austrian Academy of Sciences Graz AustriaNASA Goddard Space Flight Center Heliophysics Science Division Greenbelt MD USASolar–Terrestrial Centre of Excellence—SIDC Royal Observatory of Belgium Brussels BelgiumSolar–Terrestrial Centre of Excellence—SIDC Royal Observatory of Belgium Brussels BelgiumSchool of Earth and Space Sciences University of Science and Technology of China Hefei ChinaSolar–Terrestrial Centre of Excellence—SIDC Royal Observatory of Belgium Brussels BelgiumIPAC–Spitzer California Institute of Technology Pasadena CA USARays of Space Oy Vantaa FinlandDepartment of Physics University of Helsinki Helsinki FinlandSwedish Institute of Space Physics Kiruna SwedenSwedish Institute of Space Physics Kiruna SwedenAbstract Coronal mass ejections (CMEs) and solar energetic particles (SEPs) are two phenomena that can cause severe space weather effects throughout the heliosphere. The evolution of CMEs, especially in terms of their magnetic structure, and the configuration of the interplanetary magnetic field (IMF) that influences the transport of SEPs are currently areas of active research. These two aspects are not necessarily independent of each other, especially during solar maximum when multiple eruptive events can occur close in time. Accordingly, we present the analysis of a CME that erupted on May 11, 2012 (SOL2012‐05‐11) and an SEP event following an eruption that took place on May 17, 2012 (SOL2012‐05‐17). After observing the May 11 CME using remote‐sensing data from three viewpoints, we evaluate its propagation through interplanetary space using several models. Then, we analyze in‐situ measurements from five predicted impact locations (Venus, Earth, the Spitzer Space Telescope, the Mars Science Laboratory en route to Mars, and Mars) in order to search for CME signatures. We find that all in‐situ locations detect signatures of an SEP event, which we trace back to the May 17 eruption. These findings suggest that the May 11 CME provided a direct magnetic connectivity for the efficient transport of SEPs. We discuss the space weather implications of CME evolution, regarding in particular its magnetic structure, and CME‐driven IMF preconditioning that facilitates SEP transport. Finally, this work remarks the importance of using data from multiple spacecraft, even those that do not include space weather research as their primary objective.https://doi.org/10.1029/2020SW002654coronal mass ejectionsheliophysicsinterplanetary magnetic fieldsolar energetic particlessolar windspace weather
spellingShingle Erika Palmerio
Emilia K. J. Kilpua
Olivier Witasse
David Barnes
Beatriz Sánchez‐Cano
Andreas J. Weiss
Teresa Nieves‐Chinchilla
Christian Möstl
Lan K. Jian
Marilena Mierla
Andrei N. Zhukov
Jingnan Guo
Luciano Rodriguez
Patrick J. Lowrance
Alexey Isavnin
Lucile Turc
Yoshifumi Futaana
Mats Holmström
CME Magnetic Structure and IMF Preconditioning Affecting SEP Transport
Space Weather
coronal mass ejections
heliophysics
interplanetary magnetic field
solar energetic particles
solar wind
space weather
title CME Magnetic Structure and IMF Preconditioning Affecting SEP Transport
title_full CME Magnetic Structure and IMF Preconditioning Affecting SEP Transport
title_fullStr CME Magnetic Structure and IMF Preconditioning Affecting SEP Transport
title_full_unstemmed CME Magnetic Structure and IMF Preconditioning Affecting SEP Transport
title_short CME Magnetic Structure and IMF Preconditioning Affecting SEP Transport
title_sort cme magnetic structure and imf preconditioning affecting sep transport
topic coronal mass ejections
heliophysics
interplanetary magnetic field
solar energetic particles
solar wind
space weather
url https://doi.org/10.1029/2020SW002654
work_keys_str_mv AT erikapalmerio cmemagneticstructureandimfpreconditioningaffectingseptransport
AT emiliakjkilpua cmemagneticstructureandimfpreconditioningaffectingseptransport
AT olivierwitasse cmemagneticstructureandimfpreconditioningaffectingseptransport
AT davidbarnes cmemagneticstructureandimfpreconditioningaffectingseptransport
AT beatrizsanchezcano cmemagneticstructureandimfpreconditioningaffectingseptransport
AT andreasjweiss cmemagneticstructureandimfpreconditioningaffectingseptransport
AT teresanieveschinchilla cmemagneticstructureandimfpreconditioningaffectingseptransport
AT christianmostl cmemagneticstructureandimfpreconditioningaffectingseptransport
AT lankjian cmemagneticstructureandimfpreconditioningaffectingseptransport
AT marilenamierla cmemagneticstructureandimfpreconditioningaffectingseptransport
AT andreinzhukov cmemagneticstructureandimfpreconditioningaffectingseptransport
AT jingnanguo cmemagneticstructureandimfpreconditioningaffectingseptransport
AT lucianorodriguez cmemagneticstructureandimfpreconditioningaffectingseptransport
AT patrickjlowrance cmemagneticstructureandimfpreconditioningaffectingseptransport
AT alexeyisavnin cmemagneticstructureandimfpreconditioningaffectingseptransport
AT lucileturc cmemagneticstructureandimfpreconditioningaffectingseptransport
AT yoshifumifutaana cmemagneticstructureandimfpreconditioningaffectingseptransport
AT matsholmstrom cmemagneticstructureandimfpreconditioningaffectingseptransport