Formal Verification of Nonfunctional Requirements of Overall Instrumentation and Control Architectures
The design of safety-critical cyber–physical systems requires a rigorous check of their operation logic, as well as an analysis of their overall instrumentation and control (I&C) architectures. In this article, we focus on the latter and use formal verification methods to reason a...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2024-01-01
|
Series: | IEEE Open Journal of the Industrial Electronics Society |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10555152/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The design of safety-critical cyber–physical systems requires a rigorous check of their operation logic, as well as an analysis of their overall instrumentation and control (I&C) architectures. In this article, we focus on the latter and use formal verification methods to reason about the correctness of an I&C architecture represented with an ontology, using the example of a nuclear power plant design. A safe nuclear power plant must comply with the defense-in-depth principle, which introduces constraints on the physical and functional components of the I&C systems it consists of. This work presents a method for designing nonfunctional requirements using function block diagrams, its definition using logical programming, and demonstrates its implementation in a graphical tool, FBQL. The tool takes as input an ontology representing the I&C architecture to be checked and allows visual design of complex nonfunctional requirements as well as explanation of the results of the checks. |
---|---|
ISSN: | 2644-1284 |