Two-Dimensional ISAR Fusion Imaging of Block Structure Targets

The range resolution and azimuth resolution are restricted by the limited transmitting bandwidth and observation angle in a monostatic radar system. To improve the two-dimensional resolution of inverse synthetic aperture radar (ISAR) imaging, a fast linearized Bregman iteration for unconstrained blo...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoxiu Zhu, Limin Liu, Baofeng Guo, Wenhua Hu, Lin Shi, Juntao Ma
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2021/6613975
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The range resolution and azimuth resolution are restricted by the limited transmitting bandwidth and observation angle in a monostatic radar system. To improve the two-dimensional resolution of inverse synthetic aperture radar (ISAR) imaging, a fast linearized Bregman iteration for unconstrained block sparsity (FLBIUB) algorithm is proposed to achieve multiradar ISAR fusion imaging of block structure targets. First, the ISAR imaging echo data of block structure targets is established based on the geometrical theory of the diffraction model. The multiradar ISAR fusion imaging is transformed into a signal sparse representation problem by vectorization operation. Then, considering the block sparsity of the echo data of block structure targets, the FLBIUB algorithm is utilized to achieve the block sparse signal reconstruction and obtain the fusion image. The algorithm further accelerates the iterative convergence speed and improves the imaging efficiency by combining the weighted back-adding residual and condition number optimization of the basis matrix. Finally, simulation experiments show that the proposed method can effectively achieve block sparse signal reconstruction and two-dimensional multiradar ISAR fusion imaging of block structure targets.
ISSN:1687-5869
1687-5877