An Integration of Deep Neural Network-Based Extended Kalman Filter (DNN-EKF) Method in Ultra-Wideband (UWB) Localization for Distance Loss Optimization

This paper examines the critical role of indoor positioning for robots, with a particular focus on small and confined spaces such as homes, warehouses, and similar environments. We develop an algorithm by integrating deep neural networks (DNNs) with the extended Kalman filter (EKF) method, which is...

Full description

Saved in:
Bibliographic Details
Main Authors: Chanthol Eang, Seungjae Lee
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/24/23/7643
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper examines the critical role of indoor positioning for robots, with a particular focus on small and confined spaces such as homes, warehouses, and similar environments. We develop an algorithm by integrating deep neural networks (DNNs) with the extended Kalman filter (EKF) method, which is known as DNN-EKF, to obtain an accurate indoor localization for ensuring precise and reliable robot movements within the use of Ultra-Wideband (UWB) technology. The study introduces a novel methodology that combines advanced technology, including DNN, filtering techniques, specifically the EKF and UWB technology, with the objective of enhancing the accuracy of indoor localization systems. The objective of integrating these technologies is to develop a more robust and dependable solution for robot navigation in challenging indoor environments. The proposed approach combines a DNN with the EKF to significantly improve indoor localization accuracy for mobile robots. The results clearly show that the proposed model outperforms existing methods, including NN-EKF, LPF-EKF, and other traditional approaches. In particular, the DNN-EKF method achieves optimal performance with the least distance loss compared to NN-EKF and LPF-EKF. These results highlight the superior effectiveness of the DNN-EKF method in providing precise localization in indoor environments, especially when utilizing UWB technology. This makes the model highly suitable for real-time robotic applications, particularly in dynamic and noisy environments.
ISSN:1424-8220