Semiregularity as a consequence of Goodwillie’s theorem

We realise Buchweitz and Flenner’s semiregularity map (and hence a fortiori Bloch’s semiregularity map) for a smooth variety X as the tangent of a generalised Abel–Jacobi map on the derived moduli stack of perfect complexes on X. The target of this map is an analogue of Deligne cohomology defined in...

Full description

Saved in:
Bibliographic Details
Main Author: J.P. Pridham
Format: Article
Language:English
Published: Cambridge University Press 2024-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509424001324/type/journal_article
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We realise Buchweitz and Flenner’s semiregularity map (and hence a fortiori Bloch’s semiregularity map) for a smooth variety X as the tangent of a generalised Abel–Jacobi map on the derived moduli stack of perfect complexes on X. The target of this map is an analogue of Deligne cohomology defined in terms of cyclic homology, and Goodwillie’s theorem on nilpotent ideals ensures that it has the desired tangent space (a truncated de Rham complex).
ISSN:2050-5094