Improved Flame Retardancy of Bacterial Cellulose Fabrics Treated Using the Plant-Based Materials Banana Peel, Beet, and Spinach
This study identified plant-based materials for use as flame retardants in combination with bacterial cellulose (BC) and enhanced the flame retardancy of BC fabrics. Eight plant-based materials were screened via thermogravimetric analysis, and banana peel, beet, and spinach were selected as plant-ba...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2024-12-01
|
Series: | Journal of Natural Fibers |
Subjects: | |
Online Access: | https://www.tandfonline.com/doi/10.1080/15440478.2024.2436053 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study identified plant-based materials for use as flame retardants in combination with bacterial cellulose (BC) and enhanced the flame retardancy of BC fabrics. Eight plant-based materials were screened via thermogravimetric analysis, and banana peel, beet, and spinach were selected as plant-based flame retardants. The chemical and physical structure analyses of BC samples treated with banana peel, beet, and spinach, respectively, revealed that the plant-based flame retardants were entrapped within the BC matrices without changing the structure of BC. The flame retardancy of the plant-based flame retardant-treated BC samples was compared to that of BC treated with the sodium metasilicate nonahydrate, which is a commercial flame retardant. Vertical flammability and char morphology studies confirmed that the plant-based flame retardant-treated BC samples formed honeycomb chars during combustion. The limiting oxygen indices of the plant-based flame retardant-treated BC samples were 40–47%, which exceeded that of sodium metasilicate nonahydrate-treated BC of 36%. In thermogravimetric analysis, the residual masses of the plant-based flame retardant-treated BC samples were similar to that of sodium metasilicate nonahydrate-treated BC. Therefore, BC fabrics with improved flame retardancy were developed using plant-based flame retardants. |
---|---|
ISSN: | 1544-0478 1544-046X |