Temporally-consistent koopman autoencoders for forecasting dynamical systems

Abstract Absence of sufficiently high-quality data often poses a key challenge in data-driven modeling of high-dimensional spatio-temporal dynamical systems. Koopman Autoencoders (KAEs) harness the expressivity of deep neural networks (DNNs), the dimension reduction capabilities of autoencoders, and...

Full description

Saved in:
Bibliographic Details
Main Authors: Indranil Nayak, Ananda Chakrabarti, Mrinal Kumar, Fernando L. Teixeira, Debdipta Goswami
Format: Article
Language:English
Published: Nature Portfolio 2025-07-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-05222-7
Tags: Add Tag
No Tags, Be the first to tag this record!