Assessment of impact of bottlenecks on evacuation in subway stations using network analysis
In this paper, a novel graph-theory-based analytical framework is introduced, which maps a subway station's spatial configuration into a network model using a space syntax approach. This framework employs Betweenness Centrality (BC) analysis to identify potential bottleneck points in evacuation...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-03-01
|
| Series: | Developments in the Built Environment |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2666165925000328 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, a novel graph-theory-based analytical framework is introduced, which maps a subway station's spatial configuration into a network model using a space syntax approach. This framework employs Betweenness Centrality (BC) analysis to identify potential bottleneck points in evacuation flows. Various what-if scenarios are tested, including evacuations from the subway station in intact conditions, damaged conditions due to disaster, and improved design for enhanced evacuability. The framework is applied in a case study of Gwanggyo Jungang Station in Korea, which features a typical subway station layout and spatial configuration. Pedestrian simulation models (PSM) are developed and tested for each scenario, allowing for a comparison between the BC analysis results and simulation outcomes. The findings verify the effectiveness of the proposed framework. This integrated approach offers a novel methodical avenue for the quantitative assessment of the evacuability of underground facilities, potentially enhancing subway station designs for better public safety. |
|---|---|
| ISSN: | 2666-1659 |