Ultrawideband high density polymer-based spherical array for real-time functional optoacoustic micro-angiography

Abstract Owing to its unique ability to capture volumetric tomographic information with a single light flash, optoacoustic (OA) tomography has recently demonstrated ultrafast imaging speeds ultimately limited by the ultrasound time-of-flight. The method’s scalability and the achievable spatial resol...

Full description

Saved in:
Bibliographic Details
Main Authors: Pavel V. Subochev, Xosé Luís Deán-Ben, Zhenyue Chen, Maxim B. Prudnikov, Vladimir A. Vorobev, Alexey A. Kurnikov, Anna G. Orlova, Anna S. Postnikova, Alexey V. Kharitonov, Mikhail D. Proyavin, Roman I. Ovsyannikov, Anatoly G. Sanin, Mikhail Y. Kirillin, Francisco Montero de Espinosa, Ilya V. Turchin, Daniel Razansky
Format: Article
Language:English
Published: Nature Publishing Group 2025-07-01
Series:Light: Science & Applications
Online Access:https://doi.org/10.1038/s41377-025-01894-y
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Owing to its unique ability to capture volumetric tomographic information with a single light flash, optoacoustic (OA) tomography has recently demonstrated ultrafast imaging speeds ultimately limited by the ultrasound time-of-flight. The method’s scalability and the achievable spatial resolution are yet limited by the narrow bandwidth of piezo-composite arrays currently employed for OA signal detection. Here we report on the first implementation of high-density spherical array technology based on flexible polyvinylidene difluoride films featuring ultrawideband (0.3–40 MHz) sub mm2 area elements, thus enabling real-time multi-scale volumetric imaging with 22–35 µm spatial resolution, superior image fidelity and over an order of magnitude signal-to-noise enhancement compared to piezo-composite equivalents. We further demonstrate five-dimensional (spectroscopic, time-resolved, volumetric) imaging capabilities by visualizing fast stimulus-evoked cerebral oxygenation changes in mice and performing real-time functional angiography of deep human micro-vasculature. The new technology thus leverages the true potential of OA for quantitative high-resolution visualization of rapid bio-dynamics across scales.
ISSN:2047-7538