Unmanned Aerial Vehicles Applicability to Mapping Soil Properties Under Homogeneous Steppe Vegetation

Unmanned aerial vehicles (UAVs) are rapidly becoming a popular tool for digital soil mapping at a large-scale. However, their applicability in areas with homogeneous vegetation (i.e., not bare soil) has not been fully investigated. In this study, we aimed to predict soil organic carbon, soil texture...

Full description

Saved in:
Bibliographic Details
Main Authors: Azamat Suleymanov, Mikhail Komissarov, Mikhail Aivazyan, Ruslan Suleymanov, Ilnur Bikbaev, Arseniy Garipov, Raphak Giniyatullin, Olesia Ishkinina, Iren Tuktarova, Larisa Belan
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Land
Subjects:
Online Access:https://www.mdpi.com/2073-445X/14/5/931
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Unmanned aerial vehicles (UAVs) are rapidly becoming a popular tool for digital soil mapping at a large-scale. However, their applicability in areas with homogeneous vegetation (i.e., not bare soil) has not been fully investigated. In this study, we aimed to predict soil organic carbon, soil texture at several depths, as well as the thickness of the AB soil horizon and penetration resistance using a machine learning algorithm in combination with UAV images. We used an area in the Eurasian steppe zone (Republic of Bashkortostan, Russia) covered with the <i>Stipa</i> vegetation type as a test plot, and collected 192 soil samples from it. We estimated the models using a cross-validation approach and spatial prediction uncertainties. To improve the prediction performance, we also tested the inclusion of oblique geographic coordinates (OGCs) as covariates that reflect spatial position. The following results were achieved: (i) the predictive models demonstrated poor performance using only UAV images as predictors; (ii) the incorporation of OGCs slightly improved the predictions, whereas their uncertainties remained high. We conclude that the inability to accurately predict soil properties using these predictor variables (UAV and OGC) is likely due to the limited access to soil spectral signatures and the high variability of soil properties within what appears to be a homogeneous site, particularly in relation to soil-forming factors. Our results demonstrated the limitations of UAVs’ application for modeling soil properties on a site with homogeneous vegetation, whereas including spatial autocorrelation information can benefit and should be not ignored in further studies.
ISSN:2073-445X