Exploratory insights from the immuno-oncology hollow fiber assay: A pilot approach bridging In Vitro and In Vivo models

To facilitate the translation of immunotherapies from bench to bedside, predictive preclinical models are essential. We developed the in vivo immuno-oncology Hollow Fiber Assay (HFA) to bridge the gap between simpler cell-based in vitro assays and more complex mouse models for immuno-oncology drug e...

Full description

Saved in:
Bibliographic Details
Main Authors: Tove Selvin, Malin Berglund, Anders Åkerström, Marco Zia, Jakob Rudfeldt, Malin Jarvius, Rolf Larsson, Claes R Andersson, Mårten Fryknäs
Format: Article
Language:English
Published: Elsevier 2024-12-01
Series:SLAS Technology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2472630324001146
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To facilitate the translation of immunotherapies from bench to bedside, predictive preclinical models are essential. We developed the in vivo immuno-oncology Hollow Fiber Assay (HFA) to bridge the gap between simpler cell-based in vitro assays and more complex mouse models for immuno-oncology drug evaluation. The assay involves co-culturing human cancer cell lines or primary patient-derived cancer cells with human immune cells inside semipermeable hollow fibers. Implanted intraperitoneally in mice, the fibers captured treatment-induced immune cell-mediated cancer cell killing following treatments with aCD3 and/or IL-2, demonstrating the feasibility of the assay. Traditional models require lengthy observation periods to monitor tumor growth and treatment response. The immuno-oncology HFA enables a rapid initial in vivo evaluation of immunological agents on cancer and immune cells of human origin, addressing two of the 3Rs — reduction and refinement — in animal research.
ISSN:2472-6303