Predicting stroke with machine learning techniques in a sub-Saharan African population

Background: Stroke is the second leading cause of death and the third leading cause of disability globally, including Africa, which bears its largest burden. Accurate models are needed in Africa to predict and prevent stroke occurrence. The aim of this study was to identify the best machine learning...

Full description

Saved in:
Bibliographic Details
Main Authors: Benjamin Segun Aribisala, Deirdre Edward, Godwin Ogbole, Onoja M. Akpa, Segun Ayilara, Fred Sarfo, Olusola Olabanjo, Adekunle Fakunle, Babafemi Oluropo Macaulay, Joseph Yaria, Joshua Akinyemi, Albert Akpalu, Kolawole Wahab, Reginald Obiako, Morenikeji Komolafe, Lukman Owolabi, Godwin Osaigbovo, Akinkunmi Paul Okekunle, Arti Singh, Philip Ibinaye, Osahon Osawata, Adeniyi Sunday, Ijezie Chukwuonye, Carolyn Jenkins, Hemant K. Tiwari, Okechukwu Ogah, Ruth Y. Laryea, Daniel T. Lackland, Oyedunni Arulogun, Omotolani Ajala, Rufus Akinyemi, Bruce Ovbiagele, Steffen Sammet, Mayowa Owolabi
Format: Article
Language:English
Published: Elsevier 2025-09-01
Series:Neuroscience Informatics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2772528625000317
Tags: Add Tag
No Tags, Be the first to tag this record!