Non-detection of emerging and re-emerging pathogens in wastewater surveillance to confirm absence of transmission risk: A case study of polio in New York.
Infectious disease surveillance systems, including wastewater surveillance, can alert communities to the threat of emerging pathogens. We need methods to infer understanding of transmission dynamics from non-detection. We estimate a sensitivity of detection of poliovirus in wastewater to inform the...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2024-01-01
|
Series: | PLOS Global Public Health |
Online Access: | https://doi.org/10.1371/journal.pgph.0002381 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Infectious disease surveillance systems, including wastewater surveillance, can alert communities to the threat of emerging pathogens. We need methods to infer understanding of transmission dynamics from non-detection. We estimate a sensitivity of detection of poliovirus in wastewater to inform the sensitivity of wastewater surveillance for poliovirus using both a clinical epidemiology and fecal shedding approach. We then apply freedom from disease to estimate the sensitivity of the wastewater surveillance network. Estimated sensitivity to detect a single poliovirus infection was low, <11% at most wastewater treatment plants and <3% in most counties. However, the maximum threshold for the number of infections when polio is not detected in wastewater was much lower. Prospective wastewater surveillance can confirm the absence of a polio threat and be escalated in the case of poliovirus detection. These methods can be applied to any emerging or re-emerging pathogen, and improve understanding from wastewater surveillance. |
---|---|
ISSN: | 2767-3375 |