Leaf Water Potential in a Mixed Mediterranean Forest from Machine Learning and Unmanned Aerial Vehicle (UAV)-Based Hyperspectral Imaging

Leaf water potential (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ψ</mi></mrow></semantics></math></inline-formula><sub>leaf</sub>) is a key indicato...

Full description

Saved in:
Bibliographic Details
Main Authors: Netanel Fishman, Yehuda Yungstein, Assaf Yaakobi, Sophie Obersteiner, Laura Rez, Gabriel Mulero, Yaron Michael, Tamir Klein, David Helman
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/1/106
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841549026422423552
author Netanel Fishman
Yehuda Yungstein
Assaf Yaakobi
Sophie Obersteiner
Laura Rez
Gabriel Mulero
Yaron Michael
Tamir Klein
David Helman
author_facet Netanel Fishman
Yehuda Yungstein
Assaf Yaakobi
Sophie Obersteiner
Laura Rez
Gabriel Mulero
Yaron Michael
Tamir Klein
David Helman
author_sort Netanel Fishman
collection DOAJ
description Leaf water potential (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ψ</mi></mrow></semantics></math></inline-formula><sub>leaf</sub>) is a key indicator of plant water status, but its measurement is labor-intensive and limited in spatial coverage. While remote sensing has emerged as a useful tool for estimating vegetation water status, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ψ</mi></mrow></semantics></math></inline-formula><sub>leaf</sub> remains unexplored, particularly in mixed forests. Here, we use spectral indices derived from unmanned aerial vehicle-based hyperspectral imaging and machine learning algorithms to assess <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ψ</mi></mrow></semantics></math></inline-formula><sub>leaf</sub> in a mixed, multi-species Mediterranean forest comprised of five key woody species: <i>Pinus halepensis</i>, <i>Quercus calliprinos</i>, <i>Cupressus sempervirens</i>, <i>Ceratonia siliqua</i>, and <i>Pistacia lentiscus</i>. Hyperspectral images (400–1000 nm) were acquired monthly over one year, concurrent with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ψ</mi></mrow></semantics></math></inline-formula><sub>leaf</sub> measurements in each species. Twelve spectral indices and thousands of normalized difference spectral index (NDSI) combinations were evaluated. Three machine learning algorithms—random forest (RF), extreme gradient boosting (XGBoost), and support vector machine (SVM)—were used to model <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ψ</mi></mrow></semantics></math></inline-formula><sub>leaf</sub>. We compared the machine learning model results with linear models based on spectral indices and the NDSI. SVM, using species information as a feature, performed the best with a relatively good <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ψ</mi></mrow></semantics></math></inline-formula><sub>leaf</sub> assessment (R<sup>2</sup> = 0.53; RMSE = 0.67 MPa; rRMSE = 28%), especially considering the small seasonal variance in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ψ</mi></mrow></semantics></math></inline-formula><sub>leaf</sub> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>±</mo><mi>σ</mi></mrow></semantics></math></inline-formula> = 0.8 MPa). Predictions were best for <i>Cupressus sempervirens</i> (R<sup>2</sup> = 0.80) and <i>Pistacia lentiscus</i> (R<sup>2</sup> = 0.49), which had the largest <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ψ</mi></mrow></semantics></math></inline-formula><sub>leaf</sub> variances (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>±</mo><mi>σ</mi></mrow></semantics></math></inline-formula> > 1 MPa). Aggregating data at the plot scale in a ‘general’ model markedly improved the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ψ</mi></mrow></semantics></math></inline-formula><sub>leaf</sub> model (R<sup>2</sup> = 0.79, RMSE = 0.31 MPa; rRMSE = 13%), providing a promising tool for monitoring mixed forest <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ψ</mi></mrow></semantics></math></inline-formula><sub>leaf</sub>. The fact that a non-species-specific, ‘general’ model could predict <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ψ</mi></mrow></semantics></math></inline-formula><sub>leaf</sub> implies that such a model can also be used with coarser resolution satellite data. Our study demonstrates the potential of combining hyperspectral imagery with machine learning for non-invasive <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ψ</mi></mrow></semantics></math></inline-formula><sub>leaf</sub> estimation in mixed forests while highlighting challenges in capturing interspecies variability.
format Article
id doaj-art-d0fe93827c1f4f01ac0121ba6745a2af
institution Kabale University
issn 2072-4292
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj-art-d0fe93827c1f4f01ac0121ba6745a2af2025-01-10T13:20:15ZengMDPI AGRemote Sensing2072-42922024-12-0117110610.3390/rs17010106Leaf Water Potential in a Mixed Mediterranean Forest from Machine Learning and Unmanned Aerial Vehicle (UAV)-Based Hyperspectral ImagingNetanel Fishman0Yehuda Yungstein1Assaf Yaakobi2Sophie Obersteiner3Laura Rez4Gabriel Mulero5Yaron Michael6Tamir Klein7David Helman8Department of Soil and Water Sciences, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, IsraelDepartment of Soil and Water Sciences, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, IsraelDepartment of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, IsraelDepartment of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, IsraelDepartment of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, IsraelDepartment of Soil and Water Sciences, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, IsraelDepartment of Soil and Water Sciences, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, IsraelDepartment of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, IsraelDepartment of Soil and Water Sciences, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, IsraelLeaf water potential (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ψ</mi></mrow></semantics></math></inline-formula><sub>leaf</sub>) is a key indicator of plant water status, but its measurement is labor-intensive and limited in spatial coverage. While remote sensing has emerged as a useful tool for estimating vegetation water status, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ψ</mi></mrow></semantics></math></inline-formula><sub>leaf</sub> remains unexplored, particularly in mixed forests. Here, we use spectral indices derived from unmanned aerial vehicle-based hyperspectral imaging and machine learning algorithms to assess <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ψ</mi></mrow></semantics></math></inline-formula><sub>leaf</sub> in a mixed, multi-species Mediterranean forest comprised of five key woody species: <i>Pinus halepensis</i>, <i>Quercus calliprinos</i>, <i>Cupressus sempervirens</i>, <i>Ceratonia siliqua</i>, and <i>Pistacia lentiscus</i>. Hyperspectral images (400–1000 nm) were acquired monthly over one year, concurrent with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ψ</mi></mrow></semantics></math></inline-formula><sub>leaf</sub> measurements in each species. Twelve spectral indices and thousands of normalized difference spectral index (NDSI) combinations were evaluated. Three machine learning algorithms—random forest (RF), extreme gradient boosting (XGBoost), and support vector machine (SVM)—were used to model <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ψ</mi></mrow></semantics></math></inline-formula><sub>leaf</sub>. We compared the machine learning model results with linear models based on spectral indices and the NDSI. SVM, using species information as a feature, performed the best with a relatively good <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ψ</mi></mrow></semantics></math></inline-formula><sub>leaf</sub> assessment (R<sup>2</sup> = 0.53; RMSE = 0.67 MPa; rRMSE = 28%), especially considering the small seasonal variance in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ψ</mi></mrow></semantics></math></inline-formula><sub>leaf</sub> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>±</mo><mi>σ</mi></mrow></semantics></math></inline-formula> = 0.8 MPa). Predictions were best for <i>Cupressus sempervirens</i> (R<sup>2</sup> = 0.80) and <i>Pistacia lentiscus</i> (R<sup>2</sup> = 0.49), which had the largest <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ψ</mi></mrow></semantics></math></inline-formula><sub>leaf</sub> variances (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>±</mo><mi>σ</mi></mrow></semantics></math></inline-formula> > 1 MPa). Aggregating data at the plot scale in a ‘general’ model markedly improved the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ψ</mi></mrow></semantics></math></inline-formula><sub>leaf</sub> model (R<sup>2</sup> = 0.79, RMSE = 0.31 MPa; rRMSE = 13%), providing a promising tool for monitoring mixed forest <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ψ</mi></mrow></semantics></math></inline-formula><sub>leaf</sub>. The fact that a non-species-specific, ‘general’ model could predict <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ψ</mi></mrow></semantics></math></inline-formula><sub>leaf</sub> implies that such a model can also be used with coarser resolution satellite data. Our study demonstrates the potential of combining hyperspectral imagery with machine learning for non-invasive <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ψ</mi></mrow></semantics></math></inline-formula><sub>leaf</sub> estimation in mixed forests while highlighting challenges in capturing interspecies variability.https://www.mdpi.com/2072-4292/17/1/106NDVIrandom forestremote sensingSVMwaterXGBoost
spellingShingle Netanel Fishman
Yehuda Yungstein
Assaf Yaakobi
Sophie Obersteiner
Laura Rez
Gabriel Mulero
Yaron Michael
Tamir Klein
David Helman
Leaf Water Potential in a Mixed Mediterranean Forest from Machine Learning and Unmanned Aerial Vehicle (UAV)-Based Hyperspectral Imaging
Remote Sensing
NDVI
random forest
remote sensing
SVM
water
XGBoost
title Leaf Water Potential in a Mixed Mediterranean Forest from Machine Learning and Unmanned Aerial Vehicle (UAV)-Based Hyperspectral Imaging
title_full Leaf Water Potential in a Mixed Mediterranean Forest from Machine Learning and Unmanned Aerial Vehicle (UAV)-Based Hyperspectral Imaging
title_fullStr Leaf Water Potential in a Mixed Mediterranean Forest from Machine Learning and Unmanned Aerial Vehicle (UAV)-Based Hyperspectral Imaging
title_full_unstemmed Leaf Water Potential in a Mixed Mediterranean Forest from Machine Learning and Unmanned Aerial Vehicle (UAV)-Based Hyperspectral Imaging
title_short Leaf Water Potential in a Mixed Mediterranean Forest from Machine Learning and Unmanned Aerial Vehicle (UAV)-Based Hyperspectral Imaging
title_sort leaf water potential in a mixed mediterranean forest from machine learning and unmanned aerial vehicle uav based hyperspectral imaging
topic NDVI
random forest
remote sensing
SVM
water
XGBoost
url https://www.mdpi.com/2072-4292/17/1/106
work_keys_str_mv AT netanelfishman leafwaterpotentialinamixedmediterraneanforestfrommachinelearningandunmannedaerialvehicleuavbasedhyperspectralimaging
AT yehudayungstein leafwaterpotentialinamixedmediterraneanforestfrommachinelearningandunmannedaerialvehicleuavbasedhyperspectralimaging
AT assafyaakobi leafwaterpotentialinamixedmediterraneanforestfrommachinelearningandunmannedaerialvehicleuavbasedhyperspectralimaging
AT sophieobersteiner leafwaterpotentialinamixedmediterraneanforestfrommachinelearningandunmannedaerialvehicleuavbasedhyperspectralimaging
AT laurarez leafwaterpotentialinamixedmediterraneanforestfrommachinelearningandunmannedaerialvehicleuavbasedhyperspectralimaging
AT gabrielmulero leafwaterpotentialinamixedmediterraneanforestfrommachinelearningandunmannedaerialvehicleuavbasedhyperspectralimaging
AT yaronmichael leafwaterpotentialinamixedmediterraneanforestfrommachinelearningandunmannedaerialvehicleuavbasedhyperspectralimaging
AT tamirklein leafwaterpotentialinamixedmediterraneanforestfrommachinelearningandunmannedaerialvehicleuavbasedhyperspectralimaging
AT davidhelman leafwaterpotentialinamixedmediterraneanforestfrommachinelearningandunmannedaerialvehicleuavbasedhyperspectralimaging