Scaling LLSAW filters on engineered LiNbO3-on-SiC wafer for 5G and Wi-Fi 6 wideband applications
Abstract With the surge in fifth-generation (5G) wireless systems and escalating growth of data traffic, the push for higher carrier frequencies with wider bandwidths intensifies. This work reveals the outstanding capabilities of wafer-level longitudinal leaky surface acoustic wave (LLSAW) devices o...
Saved in:
| Main Authors: | , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Publishing Group
2025-08-01
|
| Series: | Microsystems & Nanoengineering |
| Online Access: | https://doi.org/10.1038/s41378-025-01007-0 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract With the surge in fifth-generation (5G) wireless systems and escalating growth of data traffic, the push for higher carrier frequencies with wider bandwidths intensifies. This work reveals the outstanding capabilities of wafer-level longitudinal leaky surface acoustic wave (LLSAW) devices on the lithium niobate on insulator (LNOI) platform in scaling SAW technology beyond 4 GHz by mass-produced lithography. Leveraging SiC-based LNOI, the fabricated LLSAW resonators showcase remarkable quality factor (Q), scalable electromechanical factor $$\left({k}_{\text{eff}}^{2}\right)$$ k eff 2 from 14% to 28%, and record high figure-of-merit (FoM) of 166 to 222 at 5–6 GHz. Targeted for diverse bands, LLSAW filters with adaptable bandwidths have been realized on specific LN-on-SiC platforms. The filters covering the n79 full band with a minimum insertion loss (IL min) of 0.85 dB and the 5 GHz Wi-Fi full band with an IL min of 1.62 dB, have been demonstrated for the first time. These findings position LLSAW on LN-on-SiC platform as a promising commercial-grade candidate for pushing the SAW paradigm towards high frequency and wideband filtering. |
|---|---|
| ISSN: | 2055-7434 |