Real-time data processing for serial crystallography experiments

We report the use of streaming data interfaces to perform fully online data processing for serial crystallography experiments, without storing intermediate data on disk. The system produces Bragg reflection intensity measurements suitable for scaling and merging, with a latency of less than 1 s per...

Full description

Saved in:
Bibliographic Details
Main Authors: Thomas White, Tim Schoof, Sergey Yakubov, Aleksandra Tolstikova, Philipp Middendorf, Mikhail Karnevskiy, Valerio Mariani, Alessandra Henkel, Bjarne Klopprogge, Juergen Hannappel, Dominik Oberthuer, Ivan De Gennaro Aquino, Dmitry Egorov, Anna Munke, Janina Sprenger, Guillaume Pompidor, Helena Taberman, Andrey Gruzinov, Jan Meyer, Johanna Hakanpää, Martin Gasthuber
Format: Article
Language:English
Published: International Union of Crystallography 2025-01-01
Series:IUCrJ
Subjects:
Online Access:https://journals.iucr.org/paper?S2052252524011837
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841554732964904960
author Thomas White
Tim Schoof
Sergey Yakubov
Aleksandra Tolstikova
Philipp Middendorf
Mikhail Karnevskiy
Valerio Mariani
Alessandra Henkel
Bjarne Klopprogge
Juergen Hannappel
Dominik Oberthuer
Ivan De Gennaro Aquino
Dmitry Egorov
Anna Munke
Janina Sprenger
Guillaume Pompidor
Helena Taberman
Andrey Gruzinov
Jan Meyer
Johanna Hakanpää
Martin Gasthuber
author_facet Thomas White
Tim Schoof
Sergey Yakubov
Aleksandra Tolstikova
Philipp Middendorf
Mikhail Karnevskiy
Valerio Mariani
Alessandra Henkel
Bjarne Klopprogge
Juergen Hannappel
Dominik Oberthuer
Ivan De Gennaro Aquino
Dmitry Egorov
Anna Munke
Janina Sprenger
Guillaume Pompidor
Helena Taberman
Andrey Gruzinov
Jan Meyer
Johanna Hakanpää
Martin Gasthuber
author_sort Thomas White
collection DOAJ
description We report the use of streaming data interfaces to perform fully online data processing for serial crystallography experiments, without storing intermediate data on disk. The system produces Bragg reflection intensity measurements suitable for scaling and merging, with a latency of less than 1 s per frame. Our system uses the CrystFEL software in combination with the ASAP::O data framework. In a series of user experiments at PETRA III, frames from a 16 megapixel Dectris EIGER2 X detector were searched for peaks, indexed and integrated at the maximum full-frame readout speed of 133 frames per second. The computational resources required depend on various factors, most significantly the fraction of non-blank frames (`hits'). The average single-thread processing time per frame was 242 ms for blank frames and 455 ms for hits, meaning that a single 96-core computing node was sufficient to keep up with the data, with ample headroom for unexpected throughput reductions. Further significant improvements are expected, for example by binning pixel intensities together to reduce the pixel count. We discuss the implications of real-time data processing on the `data deluge' problem from recent and future photon-science experiments, in particular on calibration requirements, computing access patterns and the need for the preservation of raw data.
format Article
id doaj-art-cd282ae9fea2420783feea606c764bfc
institution Kabale University
issn 2052-2525
language English
publishDate 2025-01-01
publisher International Union of Crystallography
record_format Article
series IUCrJ
spelling doaj-art-cd282ae9fea2420783feea606c764bfc2025-01-08T10:32:13ZengInternational Union of CrystallographyIUCrJ2052-25252025-01-011219710810.1107/S2052252524011837if5005Real-time data processing for serial crystallography experimentsThomas White0Tim Schoof1Sergey Yakubov2Aleksandra Tolstikova3Philipp Middendorf4Mikhail Karnevskiy5Valerio Mariani6Alessandra Henkel7Bjarne Klopprogge8Juergen Hannappel9Dominik Oberthuer10Ivan De Gennaro Aquino11Dmitry Egorov12Anna Munke13Janina Sprenger14Guillaume Pompidor15Helena Taberman16Andrey Gruzinov17Jan Meyer18Johanna Hakanpää19Martin Gasthuber20Center for Data and Computing in Natural Science CDCS, Deutsches Elektronen-Synchrotron DESY, Hamburg, GermanyDeutsches Elektronen-Synchrotron DESY, Hamburg, GermanyDeutsches Elektronen-Synchrotron DESY, Hamburg, GermanyDeutsches Elektronen-Synchrotron DESY, Hamburg, GermanyCenter for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, GermanyDeutsches Elektronen-Synchrotron DESY, Hamburg, GermanyLinac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, USACenter for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, GermanyCenter for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, GermanyDeutsches Elektronen-Synchrotron DESY, Hamburg, GermanyCenter for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, GermanyCenter for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, GermanyCenter for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, GermanyCenter for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, GermanyCenter for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, GermanyDeutsches Elektronen-Synchrotron DESY, Hamburg, GermanyDeutsches Elektronen-Synchrotron DESY, Hamburg, GermanyDeutsches Elektronen-Synchrotron DESY, Hamburg, GermanyDeutsches Elektronen-Synchrotron DESY, Hamburg, GermanyDeutsches Elektronen-Synchrotron DESY, Hamburg, GermanyDeutsches Elektronen-Synchrotron DESY, Hamburg, GermanyWe report the use of streaming data interfaces to perform fully online data processing for serial crystallography experiments, without storing intermediate data on disk. The system produces Bragg reflection intensity measurements suitable for scaling and merging, with a latency of less than 1 s per frame. Our system uses the CrystFEL software in combination with the ASAP::O data framework. In a series of user experiments at PETRA III, frames from a 16 megapixel Dectris EIGER2 X detector were searched for peaks, indexed and integrated at the maximum full-frame readout speed of 133 frames per second. The computational resources required depend on various factors, most significantly the fraction of non-blank frames (`hits'). The average single-thread processing time per frame was 242 ms for blank frames and 455 ms for hits, meaning that a single 96-core computing node was sufficient to keep up with the data, with ample headroom for unexpected throughput reductions. Further significant improvements are expected, for example by binning pixel intensities together to reduce the pixel count. We discuss the implications of real-time data processing on the `data deluge' problem from recent and future photon-science experiments, in particular on calibration requirements, computing access patterns and the need for the preservation of raw data.https://journals.iucr.org/paper?S2052252524011837macromolecular crystallographyserial crystallographyx-ray crystallographyreal-time data processing
spellingShingle Thomas White
Tim Schoof
Sergey Yakubov
Aleksandra Tolstikova
Philipp Middendorf
Mikhail Karnevskiy
Valerio Mariani
Alessandra Henkel
Bjarne Klopprogge
Juergen Hannappel
Dominik Oberthuer
Ivan De Gennaro Aquino
Dmitry Egorov
Anna Munke
Janina Sprenger
Guillaume Pompidor
Helena Taberman
Andrey Gruzinov
Jan Meyer
Johanna Hakanpää
Martin Gasthuber
Real-time data processing for serial crystallography experiments
IUCrJ
macromolecular crystallography
serial crystallography
x-ray crystallography
real-time data processing
title Real-time data processing for serial crystallography experiments
title_full Real-time data processing for serial crystallography experiments
title_fullStr Real-time data processing for serial crystallography experiments
title_full_unstemmed Real-time data processing for serial crystallography experiments
title_short Real-time data processing for serial crystallography experiments
title_sort real time data processing for serial crystallography experiments
topic macromolecular crystallography
serial crystallography
x-ray crystallography
real-time data processing
url https://journals.iucr.org/paper?S2052252524011837
work_keys_str_mv AT thomaswhite realtimedataprocessingforserialcrystallographyexperiments
AT timschoof realtimedataprocessingforserialcrystallographyexperiments
AT sergeyyakubov realtimedataprocessingforserialcrystallographyexperiments
AT aleksandratolstikova realtimedataprocessingforserialcrystallographyexperiments
AT philippmiddendorf realtimedataprocessingforserialcrystallographyexperiments
AT mikhailkarnevskiy realtimedataprocessingforserialcrystallographyexperiments
AT valeriomariani realtimedataprocessingforserialcrystallographyexperiments
AT alessandrahenkel realtimedataprocessingforserialcrystallographyexperiments
AT bjarneklopprogge realtimedataprocessingforserialcrystallographyexperiments
AT juergenhannappel realtimedataprocessingforserialcrystallographyexperiments
AT dominikoberthuer realtimedataprocessingforserialcrystallographyexperiments
AT ivandegennaroaquino realtimedataprocessingforserialcrystallographyexperiments
AT dmitryegorov realtimedataprocessingforserialcrystallographyexperiments
AT annamunke realtimedataprocessingforserialcrystallographyexperiments
AT janinasprenger realtimedataprocessingforserialcrystallographyexperiments
AT guillaumepompidor realtimedataprocessingforserialcrystallographyexperiments
AT helenataberman realtimedataprocessingforserialcrystallographyexperiments
AT andreygruzinov realtimedataprocessingforserialcrystallographyexperiments
AT janmeyer realtimedataprocessingforserialcrystallographyexperiments
AT johannahakanpaa realtimedataprocessingforserialcrystallographyexperiments
AT martingasthuber realtimedataprocessingforserialcrystallographyexperiments