Bi-exponential diffusion-weighted imaging for differentiating high-grade gliomas from solitary brain metastases: a VOI-based histogram analysis

Abstract This study investigated the use of bi-exponential diffusion-weighted imaging (DWI) combined with structural features to differentiate high-grade glioma (HGG) from solitary brain metastasis (SBM). A total of 57 patients (31 HGG, 26 SBM) who underwent pre-surgical multi-b DWI and structural M...

Full description

Saved in:
Bibliographic Details
Main Authors: Yifei Su, Junhao Wang, Jinxia Guo, Xuanchen Liu, Xiaoxiong Yang, Rui Cheng, Chunhong Wang, Cheng Xu, Yexin He, Hongming Ji
Format: Article
Language:English
Published: Nature Portfolio 2024-12-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-024-83452-x
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract This study investigated the use of bi-exponential diffusion-weighted imaging (DWI) combined with structural features to differentiate high-grade glioma (HGG) from solitary brain metastasis (SBM). A total of 57 patients (31 HGG, 26 SBM) who underwent pre-surgical multi-b DWI and structural MRI (T1W, T2W, T1W + C) were included. Volumes of interest (VOI) in the peritumoral edema area (PTEA) and enhanced tumor area (ETA) were selected for analysis. Histogram features of slow diffusion coefficient (Dslow), fast diffusion coefficient (Dfast), and perfusion fraction (frac) were extracted. Results showed that HGG patients had higher skewness of Dfast (P = 0.022) and frac (P = 0.077), higher kurtosis of Dslow (P = 0.019) and frac (P = 0.025), and lower entropy of Dslow (P = 0.005) and frac (P = 0.001) within the ETA. Additionally, HGG exhibited lower mean frac in both ETA (P = 0.007) and PTEA (P = 0.017). Combining skewness of frac in ETA with clear tumor margin enhanced diagnostic performance, achieving an optimal AUC of 0.79. These findings suggest that histogram analysis of diffusion and perfusion characteristics in ETA and structural features can effectively differentiate HGG from SBM.
ISSN:2045-2322