Enhanced Piezoelectric Properties of Poly(L‐lactide) Nanocomposite Microfiber Scaffolds Due to Polydopamine‐Coating of Barium Titanate Nanoparticles

Abstract Recent biomedical applications demand piezoelectric polylactide (PLA)‐based polymers, possessing biodegradable and biocompatible properties for tissue regeneration, implantable force sensors, and energy harvesting devices. However, piezoelectric poly(L‐lactide) (PLLA) possesses weak piezoel...

Full description

Saved in:
Bibliographic Details
Main Authors: Richard Schönlein, Xabier Larrañaga, Asier Panfilo, Yu Li, Aitor Larrañaga, Guoming Liu, Alejandro J. Müller, Robert Aguirresarobe, Jone M. Ugartemendia
Format: Article
Language:English
Published: Wiley-VCH 2025-01-01
Series:Advanced Materials Interfaces
Subjects:
Online Access:https://doi.org/10.1002/admi.202400546
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841560997234475008
author Richard Schönlein
Xabier Larrañaga
Asier Panfilo
Yu Li
Aitor Larrañaga
Guoming Liu
Alejandro J. Müller
Robert Aguirresarobe
Jone M. Ugartemendia
author_facet Richard Schönlein
Xabier Larrañaga
Asier Panfilo
Yu Li
Aitor Larrañaga
Guoming Liu
Alejandro J. Müller
Robert Aguirresarobe
Jone M. Ugartemendia
author_sort Richard Schönlein
collection DOAJ
description Abstract Recent biomedical applications demand piezoelectric polylactide (PLA)‐based polymers, possessing biodegradable and biocompatible properties for tissue regeneration, implantable force sensors, and energy harvesting devices. However, piezoelectric poly(L‐lactide) (PLLA) possesses weak piezoelectric properties in comparison to non‐biodegradable poly(vinylidene fluoride) (PVDF), limiting its application. This contribution presents, for the first time, a nanocomposite strategy to enhance the piezoelectric properties of PLLA, while maintaining cytocompatibility. Biocompatible and piezoelectric barium titanate (BTO) nanoparticles (NPs) are coated by polydopamine (PDA) (cBTO NPs) to improve the quality of the matrix‐filler interface and enhanced the force transmission toward the BTO NPs. Electrospun PLLA/cBTO nanocomposite microfiber scaffolds with 5 wt% of PDA‐coated BTO NPs (cBTO) exhibited an increase in piezoelectric properties of 120% in comparison to pristine PLLA microfiber scaffolds, implying a voltage output increase from 1.4 ± 0.1 to 3.2 ± 0.2 V. Furthermore, the PDA‐coating of BTO (cBTO) NPs itself has an intensifying impact on the piezoelectric properties of PLLA/cBTO nanocomposite compared to non‐coated BTO NPs, increasing the voltage output by 41%. This demonstrates the great potential of PDA‐coating of piezoelectric NPs to enhance the piezoelectric response of PLLA.
format Article
id doaj-art-cbaef8c94aae409a952e931f2059cf27
institution Kabale University
issn 2196-7350
language English
publishDate 2025-01-01
publisher Wiley-VCH
record_format Article
series Advanced Materials Interfaces
spelling doaj-art-cbaef8c94aae409a952e931f2059cf272025-01-03T08:39:29ZengWiley-VCHAdvanced Materials Interfaces2196-73502025-01-01121n/an/a10.1002/admi.202400546Enhanced Piezoelectric Properties of Poly(L‐lactide) Nanocomposite Microfiber Scaffolds Due to Polydopamine‐Coating of Barium Titanate NanoparticlesRichard Schönlein0Xabier Larrañaga1Asier Panfilo2Yu Li3Aitor Larrañaga4Guoming Liu5Alejandro J. Müller6Robert Aguirresarobe7Jone M. Ugartemendia8Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group) Department of Mining Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering University of the Basque Country (UPV/EHU) Bilbao 48013 SpainGroup of Science and Engineering of Polymeric Biomaterials (ZIBIO Group) Department of Mining Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering University of the Basque Country (UPV/EHU) Bilbao 48013 SpainGroup of Science and Engineering of Polymeric Biomaterials (ZIBIO Group) Department of Mining Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering University of the Basque Country (UPV/EHU) Bilbao 48013 SpainBeijing National Laboratory for Molecular Sciences CAS Key Laboratory of Engineering Plastics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 ChinaGroup of Science and Engineering of Polymeric Biomaterials (ZIBIO Group) Department of Mining Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering University of the Basque Country (UPV/EHU) Bilbao 48013 SpainBeijing National Laboratory for Molecular Sciences CAS Key Laboratory of Engineering Plastics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 ChinaPOLYMAT and Department of Advanced Polymers and Materials: Physics, Chemistry and Technology Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal, 3 Donostia‐San Sebastián 20018 SpainPOLYMAT and Department of Advanced Polymers and Materials: Physics, Chemistry and Technology Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal, 3 Donostia‐San Sebastián 20018 SpainGroup of Science and Engineering of Polymeric Biomaterials (ZIBIO Group) Department of Mining Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering University of the Basque Country (UPV/EHU) Bilbao 48013 SpainAbstract Recent biomedical applications demand piezoelectric polylactide (PLA)‐based polymers, possessing biodegradable and biocompatible properties for tissue regeneration, implantable force sensors, and energy harvesting devices. However, piezoelectric poly(L‐lactide) (PLLA) possesses weak piezoelectric properties in comparison to non‐biodegradable poly(vinylidene fluoride) (PVDF), limiting its application. This contribution presents, for the first time, a nanocomposite strategy to enhance the piezoelectric properties of PLLA, while maintaining cytocompatibility. Biocompatible and piezoelectric barium titanate (BTO) nanoparticles (NPs) are coated by polydopamine (PDA) (cBTO NPs) to improve the quality of the matrix‐filler interface and enhanced the force transmission toward the BTO NPs. Electrospun PLLA/cBTO nanocomposite microfiber scaffolds with 5 wt% of PDA‐coated BTO NPs (cBTO) exhibited an increase in piezoelectric properties of 120% in comparison to pristine PLLA microfiber scaffolds, implying a voltage output increase from 1.4 ± 0.1 to 3.2 ± 0.2 V. Furthermore, the PDA‐coating of BTO (cBTO) NPs itself has an intensifying impact on the piezoelectric properties of PLLA/cBTO nanocomposite compared to non‐coated BTO NPs, increasing the voltage output by 41%. This demonstrates the great potential of PDA‐coating of piezoelectric NPs to enhance the piezoelectric response of PLLA.https://doi.org/10.1002/admi.202400546barium titanateelectrospinningnanocompositepiezoelectricityPLApolydopamine
spellingShingle Richard Schönlein
Xabier Larrañaga
Asier Panfilo
Yu Li
Aitor Larrañaga
Guoming Liu
Alejandro J. Müller
Robert Aguirresarobe
Jone M. Ugartemendia
Enhanced Piezoelectric Properties of Poly(L‐lactide) Nanocomposite Microfiber Scaffolds Due to Polydopamine‐Coating of Barium Titanate Nanoparticles
Advanced Materials Interfaces
barium titanate
electrospinning
nanocomposite
piezoelectricity
PLA
polydopamine
title Enhanced Piezoelectric Properties of Poly(L‐lactide) Nanocomposite Microfiber Scaffolds Due to Polydopamine‐Coating of Barium Titanate Nanoparticles
title_full Enhanced Piezoelectric Properties of Poly(L‐lactide) Nanocomposite Microfiber Scaffolds Due to Polydopamine‐Coating of Barium Titanate Nanoparticles
title_fullStr Enhanced Piezoelectric Properties of Poly(L‐lactide) Nanocomposite Microfiber Scaffolds Due to Polydopamine‐Coating of Barium Titanate Nanoparticles
title_full_unstemmed Enhanced Piezoelectric Properties of Poly(L‐lactide) Nanocomposite Microfiber Scaffolds Due to Polydopamine‐Coating of Barium Titanate Nanoparticles
title_short Enhanced Piezoelectric Properties of Poly(L‐lactide) Nanocomposite Microfiber Scaffolds Due to Polydopamine‐Coating of Barium Titanate Nanoparticles
title_sort enhanced piezoelectric properties of poly l lactide nanocomposite microfiber scaffolds due to polydopamine coating of barium titanate nanoparticles
topic barium titanate
electrospinning
nanocomposite
piezoelectricity
PLA
polydopamine
url https://doi.org/10.1002/admi.202400546
work_keys_str_mv AT richardschonlein enhancedpiezoelectricpropertiesofpolyllactidenanocompositemicrofiberscaffoldsduetopolydopaminecoatingofbariumtitanatenanoparticles
AT xabierlarranaga enhancedpiezoelectricpropertiesofpolyllactidenanocompositemicrofiberscaffoldsduetopolydopaminecoatingofbariumtitanatenanoparticles
AT asierpanfilo enhancedpiezoelectricpropertiesofpolyllactidenanocompositemicrofiberscaffoldsduetopolydopaminecoatingofbariumtitanatenanoparticles
AT yuli enhancedpiezoelectricpropertiesofpolyllactidenanocompositemicrofiberscaffoldsduetopolydopaminecoatingofbariumtitanatenanoparticles
AT aitorlarranaga enhancedpiezoelectricpropertiesofpolyllactidenanocompositemicrofiberscaffoldsduetopolydopaminecoatingofbariumtitanatenanoparticles
AT guomingliu enhancedpiezoelectricpropertiesofpolyllactidenanocompositemicrofiberscaffoldsduetopolydopaminecoatingofbariumtitanatenanoparticles
AT alejandrojmuller enhancedpiezoelectricpropertiesofpolyllactidenanocompositemicrofiberscaffoldsduetopolydopaminecoatingofbariumtitanatenanoparticles
AT robertaguirresarobe enhancedpiezoelectricpropertiesofpolyllactidenanocompositemicrofiberscaffoldsduetopolydopaminecoatingofbariumtitanatenanoparticles
AT jonemugartemendia enhancedpiezoelectricpropertiesofpolyllactidenanocompositemicrofiberscaffoldsduetopolydopaminecoatingofbariumtitanatenanoparticles