Enhanced Piezoelectric Properties of Poly(L‐lactide) Nanocomposite Microfiber Scaffolds Due to Polydopamine‐Coating of Barium Titanate Nanoparticles
Abstract Recent biomedical applications demand piezoelectric polylactide (PLA)‐based polymers, possessing biodegradable and biocompatible properties for tissue regeneration, implantable force sensors, and energy harvesting devices. However, piezoelectric poly(L‐lactide) (PLLA) possesses weak piezoel...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley-VCH
2025-01-01
|
Series: | Advanced Materials Interfaces |
Subjects: | |
Online Access: | https://doi.org/10.1002/admi.202400546 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1841560997234475008 |
---|---|
author | Richard Schönlein Xabier Larrañaga Asier Panfilo Yu Li Aitor Larrañaga Guoming Liu Alejandro J. Müller Robert Aguirresarobe Jone M. Ugartemendia |
author_facet | Richard Schönlein Xabier Larrañaga Asier Panfilo Yu Li Aitor Larrañaga Guoming Liu Alejandro J. Müller Robert Aguirresarobe Jone M. Ugartemendia |
author_sort | Richard Schönlein |
collection | DOAJ |
description | Abstract Recent biomedical applications demand piezoelectric polylactide (PLA)‐based polymers, possessing biodegradable and biocompatible properties for tissue regeneration, implantable force sensors, and energy harvesting devices. However, piezoelectric poly(L‐lactide) (PLLA) possesses weak piezoelectric properties in comparison to non‐biodegradable poly(vinylidene fluoride) (PVDF), limiting its application. This contribution presents, for the first time, a nanocomposite strategy to enhance the piezoelectric properties of PLLA, while maintaining cytocompatibility. Biocompatible and piezoelectric barium titanate (BTO) nanoparticles (NPs) are coated by polydopamine (PDA) (cBTO NPs) to improve the quality of the matrix‐filler interface and enhanced the force transmission toward the BTO NPs. Electrospun PLLA/cBTO nanocomposite microfiber scaffolds with 5 wt% of PDA‐coated BTO NPs (cBTO) exhibited an increase in piezoelectric properties of 120% in comparison to pristine PLLA microfiber scaffolds, implying a voltage output increase from 1.4 ± 0.1 to 3.2 ± 0.2 V. Furthermore, the PDA‐coating of BTO (cBTO) NPs itself has an intensifying impact on the piezoelectric properties of PLLA/cBTO nanocomposite compared to non‐coated BTO NPs, increasing the voltage output by 41%. This demonstrates the great potential of PDA‐coating of piezoelectric NPs to enhance the piezoelectric response of PLLA. |
format | Article |
id | doaj-art-cbaef8c94aae409a952e931f2059cf27 |
institution | Kabale University |
issn | 2196-7350 |
language | English |
publishDate | 2025-01-01 |
publisher | Wiley-VCH |
record_format | Article |
series | Advanced Materials Interfaces |
spelling | doaj-art-cbaef8c94aae409a952e931f2059cf272025-01-03T08:39:29ZengWiley-VCHAdvanced Materials Interfaces2196-73502025-01-01121n/an/a10.1002/admi.202400546Enhanced Piezoelectric Properties of Poly(L‐lactide) Nanocomposite Microfiber Scaffolds Due to Polydopamine‐Coating of Barium Titanate NanoparticlesRichard Schönlein0Xabier Larrañaga1Asier Panfilo2Yu Li3Aitor Larrañaga4Guoming Liu5Alejandro J. Müller6Robert Aguirresarobe7Jone M. Ugartemendia8Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group) Department of Mining Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering University of the Basque Country (UPV/EHU) Bilbao 48013 SpainGroup of Science and Engineering of Polymeric Biomaterials (ZIBIO Group) Department of Mining Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering University of the Basque Country (UPV/EHU) Bilbao 48013 SpainGroup of Science and Engineering of Polymeric Biomaterials (ZIBIO Group) Department of Mining Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering University of the Basque Country (UPV/EHU) Bilbao 48013 SpainBeijing National Laboratory for Molecular Sciences CAS Key Laboratory of Engineering Plastics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 ChinaGroup of Science and Engineering of Polymeric Biomaterials (ZIBIO Group) Department of Mining Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering University of the Basque Country (UPV/EHU) Bilbao 48013 SpainBeijing National Laboratory for Molecular Sciences CAS Key Laboratory of Engineering Plastics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 ChinaPOLYMAT and Department of Advanced Polymers and Materials: Physics, Chemistry and Technology Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal, 3 Donostia‐San Sebastián 20018 SpainPOLYMAT and Department of Advanced Polymers and Materials: Physics, Chemistry and Technology Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal, 3 Donostia‐San Sebastián 20018 SpainGroup of Science and Engineering of Polymeric Biomaterials (ZIBIO Group) Department of Mining Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering University of the Basque Country (UPV/EHU) Bilbao 48013 SpainAbstract Recent biomedical applications demand piezoelectric polylactide (PLA)‐based polymers, possessing biodegradable and biocompatible properties for tissue regeneration, implantable force sensors, and energy harvesting devices. However, piezoelectric poly(L‐lactide) (PLLA) possesses weak piezoelectric properties in comparison to non‐biodegradable poly(vinylidene fluoride) (PVDF), limiting its application. This contribution presents, for the first time, a nanocomposite strategy to enhance the piezoelectric properties of PLLA, while maintaining cytocompatibility. Biocompatible and piezoelectric barium titanate (BTO) nanoparticles (NPs) are coated by polydopamine (PDA) (cBTO NPs) to improve the quality of the matrix‐filler interface and enhanced the force transmission toward the BTO NPs. Electrospun PLLA/cBTO nanocomposite microfiber scaffolds with 5 wt% of PDA‐coated BTO NPs (cBTO) exhibited an increase in piezoelectric properties of 120% in comparison to pristine PLLA microfiber scaffolds, implying a voltage output increase from 1.4 ± 0.1 to 3.2 ± 0.2 V. Furthermore, the PDA‐coating of BTO (cBTO) NPs itself has an intensifying impact on the piezoelectric properties of PLLA/cBTO nanocomposite compared to non‐coated BTO NPs, increasing the voltage output by 41%. This demonstrates the great potential of PDA‐coating of piezoelectric NPs to enhance the piezoelectric response of PLLA.https://doi.org/10.1002/admi.202400546barium titanateelectrospinningnanocompositepiezoelectricityPLApolydopamine |
spellingShingle | Richard Schönlein Xabier Larrañaga Asier Panfilo Yu Li Aitor Larrañaga Guoming Liu Alejandro J. Müller Robert Aguirresarobe Jone M. Ugartemendia Enhanced Piezoelectric Properties of Poly(L‐lactide) Nanocomposite Microfiber Scaffolds Due to Polydopamine‐Coating of Barium Titanate Nanoparticles Advanced Materials Interfaces barium titanate electrospinning nanocomposite piezoelectricity PLA polydopamine |
title | Enhanced Piezoelectric Properties of Poly(L‐lactide) Nanocomposite Microfiber Scaffolds Due to Polydopamine‐Coating of Barium Titanate Nanoparticles |
title_full | Enhanced Piezoelectric Properties of Poly(L‐lactide) Nanocomposite Microfiber Scaffolds Due to Polydopamine‐Coating of Barium Titanate Nanoparticles |
title_fullStr | Enhanced Piezoelectric Properties of Poly(L‐lactide) Nanocomposite Microfiber Scaffolds Due to Polydopamine‐Coating of Barium Titanate Nanoparticles |
title_full_unstemmed | Enhanced Piezoelectric Properties of Poly(L‐lactide) Nanocomposite Microfiber Scaffolds Due to Polydopamine‐Coating of Barium Titanate Nanoparticles |
title_short | Enhanced Piezoelectric Properties of Poly(L‐lactide) Nanocomposite Microfiber Scaffolds Due to Polydopamine‐Coating of Barium Titanate Nanoparticles |
title_sort | enhanced piezoelectric properties of poly l lactide nanocomposite microfiber scaffolds due to polydopamine coating of barium titanate nanoparticles |
topic | barium titanate electrospinning nanocomposite piezoelectricity PLA polydopamine |
url | https://doi.org/10.1002/admi.202400546 |
work_keys_str_mv | AT richardschonlein enhancedpiezoelectricpropertiesofpolyllactidenanocompositemicrofiberscaffoldsduetopolydopaminecoatingofbariumtitanatenanoparticles AT xabierlarranaga enhancedpiezoelectricpropertiesofpolyllactidenanocompositemicrofiberscaffoldsduetopolydopaminecoatingofbariumtitanatenanoparticles AT asierpanfilo enhancedpiezoelectricpropertiesofpolyllactidenanocompositemicrofiberscaffoldsduetopolydopaminecoatingofbariumtitanatenanoparticles AT yuli enhancedpiezoelectricpropertiesofpolyllactidenanocompositemicrofiberscaffoldsduetopolydopaminecoatingofbariumtitanatenanoparticles AT aitorlarranaga enhancedpiezoelectricpropertiesofpolyllactidenanocompositemicrofiberscaffoldsduetopolydopaminecoatingofbariumtitanatenanoparticles AT guomingliu enhancedpiezoelectricpropertiesofpolyllactidenanocompositemicrofiberscaffoldsduetopolydopaminecoatingofbariumtitanatenanoparticles AT alejandrojmuller enhancedpiezoelectricpropertiesofpolyllactidenanocompositemicrofiberscaffoldsduetopolydopaminecoatingofbariumtitanatenanoparticles AT robertaguirresarobe enhancedpiezoelectricpropertiesofpolyllactidenanocompositemicrofiberscaffoldsduetopolydopaminecoatingofbariumtitanatenanoparticles AT jonemugartemendia enhancedpiezoelectricpropertiesofpolyllactidenanocompositemicrofiberscaffoldsduetopolydopaminecoatingofbariumtitanatenanoparticles |