An open Monte Carlo based implementation of Gauss's method for initial orbit determination

Hundreds or thousands of Near-Earth Asteroids (NEAs) are discovered every year, so being able to determine their orbits to follow them successfully in the future is essential to warn of the danger they could present. Numerous methods have been developed to improve the precision and efficiency of ca...

Full description

Saved in:
Bibliographic Details
Main Authors: José B. Batista-Mendoza, Eduardo Chung, Adam’s Martínez-Soto, Joaquín Fábrega-Polleri, Carlos A. Fernández-Valdés
Format: Article
Language:English
Published: Universidad de Panamá 2025-01-01
Series:Tecnociencia
Subjects:
Online Access:https://www.revistas.up.ac.pa/index.php/tecnociencia/article/view/6633
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841560807974895616
author José B. Batista-Mendoza
Eduardo Chung
Adam’s Martínez-Soto
Joaquín Fábrega-Polleri
Carlos A. Fernández-Valdés
author_facet José B. Batista-Mendoza
Eduardo Chung
Adam’s Martínez-Soto
Joaquín Fábrega-Polleri
Carlos A. Fernández-Valdés
author_sort José B. Batista-Mendoza
collection DOAJ
description Hundreds or thousands of Near-Earth Asteroids (NEAs) are discovered every year, so being able to determine their orbits to follow them successfully in the future is essential to warn of the danger they could present. Numerous methods have been developed to improve the precision and efficiency of calculations used in the Initial Orbit Determination (IOD), with Gauss’s method being the benchmark due to its intuitive formulation, comparable precision, and historical importance. Herein, we present the results of the development of a new open access tool to simplify the process of IOD of celestial bodies, specifically, NEAs. This tool was based on a modern implementation, using code written in Python to calculate, propagate, and graph the orbits. The results obtained from the test data exhibited significant accuracy, with the maximum discrepancy not exceeding 1.2% compared to the Horizons System tool, and the average being 0.5%. Furthermore, we found that for the Monte Carlo simulations that the code uses, 5,000 iterations were more than enough to achieve the obtained accuracy.  
format Article
id doaj-art-cba2f52948ce478dbf1757dd5298da54
institution Kabale University
issn 1609-8102
2415-0940
language English
publishDate 2025-01-01
publisher Universidad de Panamá
record_format Article
series Tecnociencia
spelling doaj-art-cba2f52948ce478dbf1757dd5298da542025-01-03T15:35:45ZengUniversidad de PanamáTecnociencia1609-81022415-09402025-01-0127110.48204/j.tecno.v27n1.a6633An open Monte Carlo based implementation of Gauss's method for initial orbit determinationJosé B. Batista-Mendoza 0Eduardo Chung 1Adam’s Martínez-Soto 2Joaquín Fábrega-Polleri 3Carlos A. Fernández-Valdés 4Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Escuela de Física, Panamá. Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Departamento de Física, Panamá. Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Departamento de Física, Panamá. Universidad Católica Santa María la Antigua, Facultad de Ingeniería y Tecnología, Escuela de Ingeniería Civil, Panamá. Universidad Latina de Panamá, Facultad de Ingeniería, Escuela de Electrónica, Sistemas y Mecatrónica, Panamá. Hundreds or thousands of Near-Earth Asteroids (NEAs) are discovered every year, so being able to determine their orbits to follow them successfully in the future is essential to warn of the danger they could present. Numerous methods have been developed to improve the precision and efficiency of calculations used in the Initial Orbit Determination (IOD), with Gauss’s method being the benchmark due to its intuitive formulation, comparable precision, and historical importance. Herein, we present the results of the development of a new open access tool to simplify the process of IOD of celestial bodies, specifically, NEAs. This tool was based on a modern implementation, using code written in Python to calculate, propagate, and graph the orbits. The results obtained from the test data exhibited significant accuracy, with the maximum discrepancy not exceeding 1.2% compared to the Horizons System tool, and the average being 0.5%. Furthermore, we found that for the Monte Carlo simulations that the code uses, 5,000 iterations were more than enough to achieve the obtained accuracy.   https://www.revistas.up.ac.pa/index.php/tecnociencia/article/view/6633AsteroidsAstronomyCelestial MechanicsGauss’ MethodOrbit Determination
spellingShingle José B. Batista-Mendoza
Eduardo Chung
Adam’s Martínez-Soto
Joaquín Fábrega-Polleri
Carlos A. Fernández-Valdés
An open Monte Carlo based implementation of Gauss's method for initial orbit determination
Tecnociencia
Asteroids
Astronomy
Celestial Mechanics
Gauss’ Method
Orbit Determination
title An open Monte Carlo based implementation of Gauss's method for initial orbit determination
title_full An open Monte Carlo based implementation of Gauss's method for initial orbit determination
title_fullStr An open Monte Carlo based implementation of Gauss's method for initial orbit determination
title_full_unstemmed An open Monte Carlo based implementation of Gauss's method for initial orbit determination
title_short An open Monte Carlo based implementation of Gauss's method for initial orbit determination
title_sort open monte carlo based implementation of gauss s method for initial orbit determination
topic Asteroids
Astronomy
Celestial Mechanics
Gauss’ Method
Orbit Determination
url https://www.revistas.up.ac.pa/index.php/tecnociencia/article/view/6633
work_keys_str_mv AT josebbatistamendoza anopenmontecarlobasedimplementationofgausssmethodforinitialorbitdetermination
AT eduardochung anopenmontecarlobasedimplementationofgausssmethodforinitialorbitdetermination
AT adamsmartinezsoto anopenmontecarlobasedimplementationofgausssmethodforinitialorbitdetermination
AT joaquinfabregapolleri anopenmontecarlobasedimplementationofgausssmethodforinitialorbitdetermination
AT carlosafernandezvaldes anopenmontecarlobasedimplementationofgausssmethodforinitialorbitdetermination
AT josebbatistamendoza openmontecarlobasedimplementationofgausssmethodforinitialorbitdetermination
AT eduardochung openmontecarlobasedimplementationofgausssmethodforinitialorbitdetermination
AT adamsmartinezsoto openmontecarlobasedimplementationofgausssmethodforinitialorbitdetermination
AT joaquinfabregapolleri openmontecarlobasedimplementationofgausssmethodforinitialorbitdetermination
AT carlosafernandezvaldes openmontecarlobasedimplementationofgausssmethodforinitialorbitdetermination