Graphene/MoS2/FeCoNi(OH)x and Graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting
Abstract Development of excellent and cheap electrocatalysts for water electrolysis is of great significance for application of hydrogen energy. Here, we show a highly efficient and stable oxygen evolution reaction (OER) catalyst with multilayer-stacked hybrid structure, in which vertical graphene n...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2021-03-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-021-21742-y |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849331703663820800 |
|---|---|
| author | Xixi Ji Yanhong Lin Jie Zeng Zhonghua Ren Zijia Lin Yongbiao Mu Yejun Qiu Jie Yu |
| author_facet | Xixi Ji Yanhong Lin Jie Zeng Zhonghua Ren Zijia Lin Yongbiao Mu Yejun Qiu Jie Yu |
| author_sort | Xixi Ji |
| collection | DOAJ |
| description | Abstract Development of excellent and cheap electrocatalysts for water electrolysis is of great significance for application of hydrogen energy. Here, we show a highly efficient and stable oxygen evolution reaction (OER) catalyst with multilayer-stacked hybrid structure, in which vertical graphene nanosheets (VGSs), MoS2 nanosheets, and layered FeCoNi hydroxides (FeCoNi(OH)x) are successively grown on carbon fibers (CF/VGSs/MoS2/FeCoNi(OH)x). The catalyst exhibits excellent OER performance with a low overpotential of 225 and 241 mV to attain 500 and 1000 mA cm−2 and small Tafel slope of 29.2 mV dec−1. Theoretical calculation indicates that compositing of FeCoNi(OH)x with MoS2 could generate favorable electronic structure and decrease the OER overpotential, promoting the electrocatalytic activity. An alkaline water electrolyzer is established using CF/VGSs/MoS2/FeCoNi(OH)x anode for overall water splitting, which generates a current density of 100 mA cm−2 at 1.59 V with excellent stability over 100 h. Our highly efficient catalysts have great prospect for water electrolysis. |
| format | Article |
| id | doaj-art-c785003c07b0480f8fa1f7a40b927e17 |
| institution | Kabale University |
| issn | 2041-1723 |
| language | English |
| publishDate | 2021-03-01 |
| publisher | Nature Portfolio |
| record_format | Article |
| series | Nature Communications |
| spelling | doaj-art-c785003c07b0480f8fa1f7a40b927e172025-08-20T03:46:25ZengNature PortfolioNature Communications2041-17232021-03-0112111310.1038/s41467-021-21742-yGraphene/MoS2/FeCoNi(OH)x and Graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splittingXixi Ji0Yanhong Lin1Jie Zeng2Zhonghua Ren3Zijia Lin4Yongbiao Mu5Yejun Qiu6Jie Yu7Shenzhen Engineering Lab for Supercapacitor Materials, Shenzhen Key Laboratory for Advanced Materials, School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen, University TownShenzhen Engineering Lab for Supercapacitor Materials, Shenzhen Key Laboratory for Advanced Materials, School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen, University TownShenzhen Engineering Lab for Supercapacitor Materials, Shenzhen Key Laboratory for Advanced Materials, School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen, University TownShenzhen Engineering Lab for Supercapacitor Materials, Shenzhen Key Laboratory for Advanced Materials, School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen, University TownShenzhen Engineering Lab for Supercapacitor Materials, Shenzhen Key Laboratory for Advanced Materials, School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen, University TownShenzhen Engineering Lab for Supercapacitor Materials, Shenzhen Key Laboratory for Advanced Materials, School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen, University TownShenzhen Engineering Lab for Supercapacitor Materials, Shenzhen Key Laboratory for Advanced Materials, School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen, University TownShenzhen Engineering Lab for Supercapacitor Materials, Shenzhen Key Laboratory for Advanced Materials, School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen, University TownAbstract Development of excellent and cheap electrocatalysts for water electrolysis is of great significance for application of hydrogen energy. Here, we show a highly efficient and stable oxygen evolution reaction (OER) catalyst with multilayer-stacked hybrid structure, in which vertical graphene nanosheets (VGSs), MoS2 nanosheets, and layered FeCoNi hydroxides (FeCoNi(OH)x) are successively grown on carbon fibers (CF/VGSs/MoS2/FeCoNi(OH)x). The catalyst exhibits excellent OER performance with a low overpotential of 225 and 241 mV to attain 500 and 1000 mA cm−2 and small Tafel slope of 29.2 mV dec−1. Theoretical calculation indicates that compositing of FeCoNi(OH)x with MoS2 could generate favorable electronic structure and decrease the OER overpotential, promoting the electrocatalytic activity. An alkaline water electrolyzer is established using CF/VGSs/MoS2/FeCoNi(OH)x anode for overall water splitting, which generates a current density of 100 mA cm−2 at 1.59 V with excellent stability over 100 h. Our highly efficient catalysts have great prospect for water electrolysis.https://doi.org/10.1038/s41467-021-21742-y |
| spellingShingle | Xixi Ji Yanhong Lin Jie Zeng Zhonghua Ren Zijia Lin Yongbiao Mu Yejun Qiu Jie Yu Graphene/MoS2/FeCoNi(OH)x and Graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting Nature Communications |
| title | Graphene/MoS2/FeCoNi(OH)x and Graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting |
| title_full | Graphene/MoS2/FeCoNi(OH)x and Graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting |
| title_fullStr | Graphene/MoS2/FeCoNi(OH)x and Graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting |
| title_full_unstemmed | Graphene/MoS2/FeCoNi(OH)x and Graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting |
| title_short | Graphene/MoS2/FeCoNi(OH)x and Graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting |
| title_sort | graphene mos2 feconi oh x and graphene mos2 feconipx multilayer stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting |
| url | https://doi.org/10.1038/s41467-021-21742-y |
| work_keys_str_mv | AT xixiji graphenemos2feconiohxandgraphenemos2feconipxmultilayerstackedverticalnanosheetsoncarbonfibersforhighlyefficientoverallwatersplitting AT yanhonglin graphenemos2feconiohxandgraphenemos2feconipxmultilayerstackedverticalnanosheetsoncarbonfibersforhighlyefficientoverallwatersplitting AT jiezeng graphenemos2feconiohxandgraphenemos2feconipxmultilayerstackedverticalnanosheetsoncarbonfibersforhighlyefficientoverallwatersplitting AT zhonghuaren graphenemos2feconiohxandgraphenemos2feconipxmultilayerstackedverticalnanosheetsoncarbonfibersforhighlyefficientoverallwatersplitting AT zijialin graphenemos2feconiohxandgraphenemos2feconipxmultilayerstackedverticalnanosheetsoncarbonfibersforhighlyefficientoverallwatersplitting AT yongbiaomu graphenemos2feconiohxandgraphenemos2feconipxmultilayerstackedverticalnanosheetsoncarbonfibersforhighlyefficientoverallwatersplitting AT yejunqiu graphenemos2feconiohxandgraphenemos2feconipxmultilayerstackedverticalnanosheetsoncarbonfibersforhighlyefficientoverallwatersplitting AT jieyu graphenemos2feconiohxandgraphenemos2feconipxmultilayerstackedverticalnanosheetsoncarbonfibersforhighlyefficientoverallwatersplitting |