Asymptotic expansion in the zones of large deviations in terms of Lyapunov's fractions

Tarkime, kad atsitiktiniai dyžiai (at.d.) ξj su vidurkiais  Eξj = 0 ir dispersijomis σj2 = E ξj2 > 0,  j =  1, 2, ... , n, tenkina sąlygą: ∃ dydžiai γ > 0 ir τn > 0 tokie, kad Liapunovo trupmenos Lk, n := ∑j =1n E|ξj|k/ Bnk ≤ (k!)1 + γ/ τnk-2, k =3, 4, ... , Bn2 =  ∑j =1n σj2. Esant patenk...

Full description

Saved in:
Bibliographic Details
Main Author: Leonas Saulis
Format: Article
Language:English
Published: Vilnius University Press 1998-12-01
Series:Lietuvos Matematikos Rinkinys
Online Access:https://ojs.test/index.php/LMR/article/view/37990
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841561142903701504
author Leonas Saulis
author_facet Leonas Saulis
author_sort Leonas Saulis
collection DOAJ
description Tarkime, kad atsitiktiniai dyžiai (at.d.) ξj su vidurkiais  Eξj = 0 ir dispersijomis σj2 = E ξj2 > 0,  j =  1, 2, ... , n, tenkina sąlygą: ∃ dydžiai γ > 0 ir τn > 0 tokie, kad Liapunovo trupmenos Lk, n := ∑j =1n E|ξj|k/ Bnk ≤ (k!)1 + γ/ τnk-2, k =3, 4, ... , Bn2 =  ∑j =1n σj2. Esant patenkintai sąlygai (L*) ir reikalaujant at. d. ξj  tankio funkcijos aprėžtumo, darbe gauti P(Zn ≥ x), Zn = Sn/Bn, Sn = ξ1  + ξ2 + ... + ξn   asimptotiniai skleidimai didžiųjų nuokrypių zonose 0 ≤ x < τn*, kur τn* = {c τn / |ln τn|,  γ = 0,  cγ* τn 1/(1 + 2 γ),   γ = 0. x=0, .  x>o.
format Article
id doaj-art-c738593df0dc43f4bd9404c2dbe387df
institution Kabale University
issn 0132-2818
2335-898X
language English
publishDate 1998-12-01
publisher Vilnius University Press
record_format Article
series Lietuvos Matematikos Rinkinys
spelling doaj-art-c738593df0dc43f4bd9404c2dbe387df2025-01-03T06:37:44ZengVilnius University PressLietuvos Matematikos Rinkinys0132-28182335-898X1998-12-0138II10.15388/LMD.1998.37990Asymptotic expansion in the zones of large deviations in terms of Lyapunov's fractionsLeonas Saulis0Vilnius Gediminas Technical University Tarkime, kad atsitiktiniai dyžiai (at.d.) ξj su vidurkiais  Eξj = 0 ir dispersijomis σj2 = E ξj2 > 0,  j =  1, 2, ... , n, tenkina sąlygą: ∃ dydžiai γ > 0 ir τn > 0 tokie, kad Liapunovo trupmenos Lk, n := ∑j =1n E|ξj|k/ Bnk ≤ (k!)1 + γ/ τnk-2, k =3, 4, ... , Bn2 =  ∑j =1n σj2. Esant patenkintai sąlygai (L*) ir reikalaujant at. d. ξj  tankio funkcijos aprėžtumo, darbe gauti P(Zn ≥ x), Zn = Sn/Bn, Sn = ξ1  + ξ2 + ... + ξn   asimptotiniai skleidimai didžiųjų nuokrypių zonose 0 ≤ x < τn*, kur τn* = {c τn / |ln τn|,  γ = 0,  cγ* τn 1/(1 + 2 γ),   γ = 0. x=0, .  x>o. https://ojs.test/index.php/LMR/article/view/37990
spellingShingle Leonas Saulis
Asymptotic expansion in the zones of large deviations in terms of Lyapunov's fractions
Lietuvos Matematikos Rinkinys
title Asymptotic expansion in the zones of large deviations in terms of Lyapunov's fractions
title_full Asymptotic expansion in the zones of large deviations in terms of Lyapunov's fractions
title_fullStr Asymptotic expansion in the zones of large deviations in terms of Lyapunov's fractions
title_full_unstemmed Asymptotic expansion in the zones of large deviations in terms of Lyapunov's fractions
title_short Asymptotic expansion in the zones of large deviations in terms of Lyapunov's fractions
title_sort asymptotic expansion in the zones of large deviations in terms of lyapunov s fractions
url https://ojs.test/index.php/LMR/article/view/37990
work_keys_str_mv AT leonassaulis asymptoticexpansioninthezonesoflargedeviationsintermsoflyapunovsfractions