Application of Biochar on Soil Improvement and Speciation Transformation of Heavy Metal in Constructed Wetland

The pyrolysis of sewage sludge into biochar, enhanced by incorporating agriculture waste rich in inorganic minerals and lignocellulosic compounds, provides an effective approach for achieving sludge-harmless treatment and resourceful utilization. In this study, sewage sludge and maize straw-based bi...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuan Zhou, Xiaoqin Nie, Yao Zhao, Liqiu Zhang, Yatian Cheng, Cancan Jiang, Wenbin Zhao, Xiangchun Wang, Chao Yang
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Biology
Subjects:
Online Access:https://www.mdpi.com/2079-7737/14/5/515
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The pyrolysis of sewage sludge into biochar, enhanced by incorporating agriculture waste rich in inorganic minerals and lignocellulosic compounds, provides an effective approach for achieving sludge-harmless treatment and resourceful utilization. In this study, sewage sludge and maize straw-based biochar (SMB) was prepared using the co-pyrolysis method, and the effects of different application ratios (0%, 1%, 3%, and 5%, <i>w</i>/<i>w</i>) of SMB on soil properties, ryegrass growth, microbial community structure, and Pb content and speciation in the contaminated soil of constructed wetlands were investigated. The results showed that SMB had a high carbon content (28.58%) and was rich in functional groups (e.g., -C-O, -C-N). The results indicated that increasing SMB dosage (0–5% <i>w</i>/<i>w</i>) in Pb-contaminated soil elevated soil pH from 6.40 to 7.93, cation-exchange capacity (CEC) from 30.59 to 79.03 cmol/kg (+158%), and organic carbon content by 65% (from 176.79 mg/kg to 107.3 mg/kg), while reducing available phosphorus and potassium by 20% and 30%, respectively, resulting in a 6% decline in ryegrass leaf length. SMB application enriched Pb-resistant bacteria (e.g., <i>Sphingomonas</i> abundance increased from 10.3% to 11.2%) and enhanced Pb immobilization. After 55 days, the total soil Pb increased by 33%, and the residual fraction Pb significantly increased by 7.3% to 21.7%, driven by functional group complexation, ion exchange, pH, and CEC improvements.
ISSN:2079-7737