Land use and land cover classification for change detection studies using convolutional neural network
Efficient land use land cover (LULC) classification is crucial for environmental monitoring, urban planning, and resource management. This study investigates LULC changes in Nanjangud taluk, Mysuru district, Karnataka, India, using remote sensing (RS) and geographic information systems (GIS). This p...
Saved in:
Main Authors: | V. Pushpalatha, P.B. Mallikarjuna, H.N. Mahendra, S. Rama Subramoniam, S. Mallikarjunaswamy |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2025-02-01
|
Series: | Applied Computing and Geosciences |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2590197425000096 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
An Assessment of Land Use Land Cover Using Machine Learning Technique
by: V. Pushpalatha, H. N. Mahendra, A. M. Prasad, N. Sharmila, D. Mahesh Kumar, N. M. Basavaraju, G. S. Pavithra and S. Mallikarjunaswamy
Published: (2024-12-01) -
Satellite imagery system in malaria transmission resulting from the land use/land cover change
by: C. Payus, et al.
Published: (2022-10-01) -
Watershed conservation prioritization using geomorphometric and land use-land cover parameters
by: G.R. Puno, et al.
Published: (2019-07-01) -
Geleneksel Tam Protezlerden İmplant Üstü Overdenture Protezlere Geçişte Oklüzyon Değişiminin T-scan III Sistemi Kullanılarak Ölçülmesi
by: Nuran Yanikoğlu, et al.
Published: (2025-01-01) -
Two-dimensional flood model for risk exposure analysis of land use/land cover in a watershed
by: G. Puno, et al.
Published: (2021-04-01)