Global uniqueness for a semilinear biharmonic equation

Abstract In this paper, we prove that the knowledge of the Dirichlet-to-Neumann map, measured on the full boundary of the bounded domain in R n , n ≥ 3 $\mathbb{R}^{n}, n\geq 3$ , can uniquely determine the Taylor series of a ( x , z ) $a(x,z)$ at z = 0 $z=0$ under general assumptions on a ( x , z )...

Full description

Saved in:
Bibliographic Details
Main Authors: Yanjun Ma, Hongxiang Zhang
Format: Article
Language:English
Published: SpringerOpen 2025-08-01
Series:Boundary Value Problems
Subjects:
Online Access:https://doi.org/10.1186/s13661-025-02090-y
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849234722823077888
author Yanjun Ma
Hongxiang Zhang
author_facet Yanjun Ma
Hongxiang Zhang
author_sort Yanjun Ma
collection DOAJ
description Abstract In this paper, we prove that the knowledge of the Dirichlet-to-Neumann map, measured on the full boundary of the bounded domain in R n , n ≥ 3 $\mathbb{R}^{n}, n\geq 3$ , can uniquely determine the Taylor series of a ( x , z ) $a(x,z)$ at z = 0 $z=0$ under general assumptions on a ( x , z ) $a(x,z)$ .
format Article
id doaj-art-c1e462ec3bcf4dfd89b51fb0f71b8425
institution Kabale University
issn 1687-2770
language English
publishDate 2025-08-01
publisher SpringerOpen
record_format Article
series Boundary Value Problems
spelling doaj-art-c1e462ec3bcf4dfd89b51fb0f71b84252025-08-20T04:03:03ZengSpringerOpenBoundary Value Problems1687-27702025-08-012025111310.1186/s13661-025-02090-yGlobal uniqueness for a semilinear biharmonic equationYanjun Ma0Hongxiang Zhang1Department of Mathematics, China University of Mining and TechnologySchool of Mathematical Sciences, University of Chinese Academy of SciencesAbstract In this paper, we prove that the knowledge of the Dirichlet-to-Neumann map, measured on the full boundary of the bounded domain in R n , n ≥ 3 $\mathbb{R}^{n}, n\geq 3$ , can uniquely determine the Taylor series of a ( x , z ) $a(x,z)$ at z = 0 $z=0$ under general assumptions on a ( x , z ) $a(x,z)$ .https://doi.org/10.1186/s13661-025-02090-yDirichlet-to-Neumann mapHigher-order linearization techniqueSemilinear Biharmonic equation
spellingShingle Yanjun Ma
Hongxiang Zhang
Global uniqueness for a semilinear biharmonic equation
Boundary Value Problems
Dirichlet-to-Neumann map
Higher-order linearization technique
Semilinear Biharmonic equation
title Global uniqueness for a semilinear biharmonic equation
title_full Global uniqueness for a semilinear biharmonic equation
title_fullStr Global uniqueness for a semilinear biharmonic equation
title_full_unstemmed Global uniqueness for a semilinear biharmonic equation
title_short Global uniqueness for a semilinear biharmonic equation
title_sort global uniqueness for a semilinear biharmonic equation
topic Dirichlet-to-Neumann map
Higher-order linearization technique
Semilinear Biharmonic equation
url https://doi.org/10.1186/s13661-025-02090-y
work_keys_str_mv AT yanjunma globaluniquenessforasemilinearbiharmonicequation
AT hongxiangzhang globaluniquenessforasemilinearbiharmonicequation