Bearing fault diagnosis for variable operating conditions based on KAN convolution and dual branch fusion attention
Abstract This paper proposes a bearing fault diagnosis method based on Kolmogorov–Arnold Convolutional Network: Adaptive Context-aware Graph Channel Attention with Squeeze-and-Excitation Networks (KANConv-ACGCA-SENet). Firstly, a new structure of KANs is applied to Convolutional Neural Networks (CNN...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | Scientific Reports |
| Subjects: | |
| Online Access: | https://doi.org/10.1038/s41598-025-04620-1 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|