Research on the Fault Diagnosis Method for Rolling Bearings Based on Improved VMD and Automatic IMF Acquisition

This paper proposes a novel method to improve the variational mode decomposition (VMD) method and to automatically acquire the sensitive intrinsic mode function (IMF). First, since fault signals are impulsive and periodic, a weighted autocorrelative function maximum (AFM) indicator is constructed ba...

Full description

Saved in:
Bibliographic Details
Main Authors: Ying Zhang, Anchen Wang
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2020/6216903
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes a novel method to improve the variational mode decomposition (VMD) method and to automatically acquire the sensitive intrinsic mode function (IMF). First, since fault signals are impulsive and periodic, a weighted autocorrelative function maximum (AFM) indicator is constructed based on the Gini index and autocorrelation function to serve as the optimization objective function. The mode number K and the penalty parameter α of VMD are automatically obtained through an optimal parameter searching process underpinned by the improved particle swarm optimization (PSO) algorithm with a variety of inertia weights. This improvement solves one of the major drawbacks of the conventional VMD method, that is, the need to manually set parameters. Then, an optimal IMF automatic selecting process is performed for single-failure faults and compound faults, according to the principles of the maximum weighted AFM indicator and maximum spectrum peak ratio (SPR), respectively. The sensitive IMFs are then subjected to an envelope demodulation analysis to obtain the fault characteristic frequency. The results of simulations and experiments show that the proposed method can effectively identify fault characteristics early, especially compound faults, demonstrating great potential for real-world applications.
ISSN:1070-9622
1875-9203