Enhancing Situational Awareness of Helicopter Pilots in Unmanned Aerial Vehicle-Congested Environments Using an Airborne Visual Artificial Intelligence Approach

The use of drones or Unmanned Aerial Vehicles (UAVs) and other flying vehicles has increased exponentially in the last decade. These devices pose a serious threat to helicopter pilots who constantly seek to maintain situational awareness while flying to avoid objects that might lead to a collision....

Full description

Saved in:
Bibliographic Details
Main Authors: John Mugabe, Mariusz Wisniewski, Adolfo Perrusquía, Weisi Guo
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/24/23/7762
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The use of drones or Unmanned Aerial Vehicles (UAVs) and other flying vehicles has increased exponentially in the last decade. These devices pose a serious threat to helicopter pilots who constantly seek to maintain situational awareness while flying to avoid objects that might lead to a collision. In this paper, an Airborne Visual Artificial Intelligence System is proposed that seeks to improve helicopter pilots’ situational awareness (SA) under UAV-congested environments. Specifically, the system is capable of detecting UAVs, estimating their distance, predicting the probability of collision, and sending an alert to the pilot accordingly. To this end, we aim to combine the strengths of both spatial and temporal deep learning models and classic computer stereo vision to (1) estimate the depth of UAVs, (2) predict potential collisions with other UAVs in the sky, and (3) provide alerts for the pilot with regards to the drone that is likely to collide. The feasibility of integrating artificial intelligence into a comprehensive SA system is herein illustrated and can potentially contribute to the future of autonomous aircraft applications.
ISSN:1424-8220