Systematic softening in universal machine learning interatomic potentials
Abstract Machine learning interatomic potentials (MLIPs) have introduced a new paradigm for atomic simulations. Recent advancements have led to universal MLIPs (uMLIPs) that are pre-trained on diverse datasets, providing opportunities for universal force fields and foundational machine learning mode...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-01-01
|
Series: | npj Computational Materials |
Online Access: | https://doi.org/10.1038/s41524-024-01500-6 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Machine learning interatomic potentials (MLIPs) have introduced a new paradigm for atomic simulations. Recent advancements have led to universal MLIPs (uMLIPs) that are pre-trained on diverse datasets, providing opportunities for universal force fields and foundational machine learning models. However, their performance in extrapolating to out-of-distribution complex atomic environments remains unclear. In this study, we highlight a consistent potential energy surface (PES) softening effect in three uMLIPs: M3GNet, CHGNet, and MACE-MP-0, which is characterized by energy and force underprediction in atomic-modeling benchmarks including surfaces, defects, solid-solution energetics, ion migration barriers, phonon vibration modes, and general high-energy states. The PES softening behavior originates primarily from the systematically underpredicted PES curvature, which derives from the biased sampling of near-equilibrium atomic arrangements in uMLIP pre-training datasets. Our findings suggest that a considerable fraction of uMLIP errors are highly systematic, and can therefore be efficiently corrected. We argue for the importance of a comprehensive materials dataset with improved PES sampling for next-generation foundational MLIPs. |
---|---|
ISSN: | 2057-3960 |