Hierarchical marker genes selection in scRNA-seq analysis.

When analyzing scRNA-seq data containing heterogeneous cell populations, an important task is to select informative marker genes to distinguish various cell clusters and annotate the clusters with biologically meaningful cell types. In existing analysis methods and pipelines, marker genes are typica...

Full description

Saved in:
Bibliographic Details
Main Authors: Yutong Sun, Peng Qiu
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2024-12-01
Series:PLoS Computational Biology
Online Access:https://doi.org/10.1371/journal.pcbi.1012643
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:When analyzing scRNA-seq data containing heterogeneous cell populations, an important task is to select informative marker genes to distinguish various cell clusters and annotate the clusters with biologically meaningful cell types. In existing analysis methods and pipelines, marker genes are typically identified using a one-vs-all strategy, examining differential expression between one cell cluster versus the combination of all other cell clusters. However, this strategy applied to cell clusters belonging to closely related cell types often generates overlapping marker genes, which capture the common signature of closely related cell clusters but provide limited information for distinguishing them. To address the limitations of the one-vs-all strategy, we propose a hierarchical marker gene selection strategy that groups similar cell clusters and selects marker genes in a hierarchical manner. This strategy is able to improve the accuracy and interpretability of cell type identification in single-cell RNA-seq data.
ISSN:1553-734X
1553-7358