Modeling Ontology-Based Decay Analysis and HBIM for the Conservation of Architectural Heritage: The Big Gate and Adjacent Curtain Walls in Ibb, Yemen

The conservation of architectural heritage (AH) in regions threatened by natural and human-induced factors requires interdisciplinary approaches that integrate physical documentation with semantic modeling. This study introduces a comprehensive framework combining Historic Building Information Model...

Full description

Saved in:
Bibliographic Details
Main Authors: Basema Qasim Derhem Dammag, Dai Jian, Abdulkarem Qasem Dammag, Yahya Alshawabkeh, Sultan Almutery, Amer Habibullah, Ahmad Baik
Format: Article
Language:English
Published: MDPI AG 2025-08-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/15/15/2795
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The conservation of architectural heritage (AH) in regions threatened by natural and human-induced factors requires interdisciplinary approaches that integrate physical documentation with semantic modeling. This study introduces a comprehensive framework combining Historic Building Information Modeling (HBIM) with ontology-based modeling aligned with the CIDOC Conceptual Reference Model (CIDOC CRM). Focusing on the Big Gate and adjacent curtain walls in Ibb, Yemen, where the gate is entirely lost, the study reconstructs the structure using historical photographs, eyewitness accounts, and analogical references. The methodology incorporates UAV and terrestrial photogrammetry surveys, point cloud generation, and semantic enrichment using Autodesk Revit V. 2024 and Protégé V. 5.5. Decay phenomena such as cracks, efflorescence, and disintegration were ontologically classified and spatially linked to the HBIM model, revealing deterioration patterns concerning historical phases and environmental exposure. The resulting system enables dynamic documentation, facilitates strategic conservation planning, and enhances data interoperability across heritage platforms. The proposed framework is transferable to other heritage sites, supporting both the conservation of extant structures and the reconstruction of lost ones.
ISSN:2075-5309