Limit properties of rational Bézier curves with mixed weights(具有混合权函数的有理Bézier曲线的极限性质)

The weights of a rational Bézier curve play a crucial role in shape modification of the curve. As the weight of a rational Bézier curve approaches infinity, the curve tends towards the corresponding control point. Previous research has shown that when all weights of a rational Bézier curve tend to i...

Full description

Saved in:
Bibliographic Details
Main Authors: 魏琦文(WEI Qiwen), 刘向云(LIU Xiangyun), 吴金明(WU Jinming), 朱春钢(ZHU Chungang)
Format: Article
Language:zho
Published: Zhejiang University Press 2025-01-01
Series:Zhejiang Daxue xuebao. Lixue ban
Subjects:
Online Access:https://doi.org/10.3785/j.issn.1008-9497.2025.01.012
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841525570168422400
author 魏琦文(WEI Qiwen)
刘向云(LIU Xiangyun)
吴金明(WU Jinming)
朱春钢(ZHU Chungang)
author_facet 魏琦文(WEI Qiwen)
刘向云(LIU Xiangyun)
吴金明(WU Jinming)
朱春钢(ZHU Chungang)
author_sort 魏琦文(WEI Qiwen)
collection DOAJ
description The weights of a rational Bézier curve play a crucial role in shape modification of the curve. As the weight of a rational Bézier curve approaches infinity, the curve tends towards the corresponding control point. Previous research has shown that when all weights of a rational Bézier curve tend to infinity in the form of power or exponential functions, the curve approaches its regular control curve. In this paper, we propose a new model, combining the transformation relationship between power functions and exponential functions, and then define the regular control curve of a rational Bézier curve with mixed weight functions. Based the toric degeneration theory, we prove that the limit of a rational Bézier curve is exactly its regular control curve when all weights tend to infinity in the form of mixed functions.(权因子是调整有理Bézier曲线形状的重要手段。当单个权因子趋于无穷时,有理Bézier曲线趋向于相应的控制顶点。已有研究表明,当所有权因子都以幂函数或指数函数形式趋于无穷时,有理Bézier曲线的极限曲线为其正则控制曲线。基于此,提出了一个新模型,结合幂权函数与指数权函数的转换关系,定义了具有混合权函数的有理Bézier曲线的正则控制曲线;结合toric退化理论,证明了当所有权因子都以混合函数形式趋于无穷时,有理Bézier曲线的极限曲线恰为其正则控制曲线;最后通过实例验证了结论的正确性。)
format Article
id doaj-art-bc634b1ea089489d9fbdf473e0d7b080
institution Kabale University
issn 1008-9497
language zho
publishDate 2025-01-01
publisher Zhejiang University Press
record_format Article
series Zhejiang Daxue xuebao. Lixue ban
spelling doaj-art-bc634b1ea089489d9fbdf473e0d7b0802025-01-17T08:42:35ZzhoZhejiang University PressZhejiang Daxue xuebao. Lixue ban1008-94972025-01-0152111012110.3785/j.issn.1008-9497.2025.01.012Limit properties of rational Bézier curves with mixed weights(具有混合权函数的有理Bézier曲线的极限性质)魏琦文(WEI Qiwen)0https://orcid.org/0009-0007-5505-8209刘向云(LIU Xiangyun)1吴金明(WU Jinming)2朱春钢(ZHU Chungang)3https://orcid.org/0000-0002-0769-08121School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, Liaoning Province, China(1大连理工大学 数学科学学院,辽宁大连116024)2School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China(2浙江工商大学 统计与数学学院,浙江杭州310018)2School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China(2浙江工商大学 统计与数学学院,浙江杭州310018)1School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, Liaoning Province, China(1大连理工大学 数学科学学院,辽宁大连116024)The weights of a rational Bézier curve play a crucial role in shape modification of the curve. As the weight of a rational Bézier curve approaches infinity, the curve tends towards the corresponding control point. Previous research has shown that when all weights of a rational Bézier curve tend to infinity in the form of power or exponential functions, the curve approaches its regular control curve. In this paper, we propose a new model, combining the transformation relationship between power functions and exponential functions, and then define the regular control curve of a rational Bézier curve with mixed weight functions. Based the toric degeneration theory, we prove that the limit of a rational Bézier curve is exactly its regular control curve when all weights tend to infinity in the form of mixed functions.(权因子是调整有理Bézier曲线形状的重要手段。当单个权因子趋于无穷时,有理Bézier曲线趋向于相应的控制顶点。已有研究表明,当所有权因子都以幂函数或指数函数形式趋于无穷时,有理Bézier曲线的极限曲线为其正则控制曲线。基于此,提出了一个新模型,结合幂权函数与指数权函数的转换关系,定义了具有混合权函数的有理Bézier曲线的正则控制曲线;结合toric退化理论,证明了当所有权因子都以混合函数形式趋于无穷时,有理Bézier曲线的极限曲线恰为其正则控制曲线;最后通过实例验证了结论的正确性。)https://doi.org/10.3785/j.issn.1008-9497.2025.01.012rational bézier curve(有理bézier曲线)weights(权因子)mixed weight functions(混合权函数)toric degeneration(toric退化)
spellingShingle 魏琦文(WEI Qiwen)
刘向云(LIU Xiangyun)
吴金明(WU Jinming)
朱春钢(ZHU Chungang)
Limit properties of rational Bézier curves with mixed weights(具有混合权函数的有理Bézier曲线的极限性质)
Zhejiang Daxue xuebao. Lixue ban
rational bézier curve(有理bézier曲线)
weights(权因子)
mixed weight functions(混合权函数)
toric degeneration(toric退化)
title Limit properties of rational Bézier curves with mixed weights(具有混合权函数的有理Bézier曲线的极限性质)
title_full Limit properties of rational Bézier curves with mixed weights(具有混合权函数的有理Bézier曲线的极限性质)
title_fullStr Limit properties of rational Bézier curves with mixed weights(具有混合权函数的有理Bézier曲线的极限性质)
title_full_unstemmed Limit properties of rational Bézier curves with mixed weights(具有混合权函数的有理Bézier曲线的极限性质)
title_short Limit properties of rational Bézier curves with mixed weights(具有混合权函数的有理Bézier曲线的极限性质)
title_sort limit properties of rational bezier curves with mixed weights 具有混合权函数的有理bezier曲线的极限性质
topic rational bézier curve(有理bézier曲线)
weights(权因子)
mixed weight functions(混合权函数)
toric degeneration(toric退化)
url https://doi.org/10.3785/j.issn.1008-9497.2025.01.012
work_keys_str_mv AT wèiqíwénweiqiwen limitpropertiesofrationalbeziercurveswithmixedweightsjùyǒuhùnhéquánhánshùdeyǒulǐbezierqūxiàndejíxiànxìngzhì
AT liúxiàngyúnliuxiangyun limitpropertiesofrationalbeziercurveswithmixedweightsjùyǒuhùnhéquánhánshùdeyǒulǐbezierqūxiàndejíxiànxìngzhì
AT wújīnmíngwujinming limitpropertiesofrationalbeziercurveswithmixedweightsjùyǒuhùnhéquánhánshùdeyǒulǐbezierqūxiàndejíxiànxìngzhì
AT zhūchūngāngzhuchungang limitpropertiesofrationalbeziercurveswithmixedweightsjùyǒuhùnhéquánhánshùdeyǒulǐbezierqūxiàndejíxiànxìngzhì