Dynamic Error Compensation Control of Direct-Driven Servo Electric Cylinder Terminal Positioning System
In this work, we aimed to determine the nonlinear disturbance caused by cascaded coupling rigid–flexible deformation and friction in a direct-driven servo electric cylinder terminal positioning system (DDSEC-TPS) during feed motion of an intermittent, reciprocating, and time-varying load. For this p...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Actuators |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-0825/14/7/317 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this work, we aimed to determine the nonlinear disturbance caused by cascaded coupling rigid–flexible deformation and friction in a direct-driven servo electric cylinder terminal positioning system (DDSEC-TPS) during feed motion of an intermittent, reciprocating, and time-varying load. For this purpose, a cascaded coupling dynamic error model of DDSEC-TPS was established based on the position–pose error model of the parallel motion platform and the rotor field-oriented vector transform. Then, a model to observe the dynamic error of the DDSEC-TPS was established using the improved beetle antennae search algorithm backpropagation neural network (IBAS-BPNN) prediction model according to the rigid–flexible deformation error theory of feed motion, and the observed dynamic error was compensated for in the vector control strategy of the DDSEC-TPS. The length and error prediction models were trained and validated using opposite and mixed datasets tested on the experimental platform, to observe dynamic errors and evaluate and optimize the prediction models. The experimental results show that dynamic error compensation can improve the position tracking accuracy of the DDSEC-TPS and the position–pose performance of the parallel motion platform. This study is of great significance for improving the consistency of following multiple DDSEC-TPSs and the position–pose accuracy of parallel motion platforms. |
|---|---|
| ISSN: | 2076-0825 |