Learning to represent causality in recommender systems driven by large language models (LLMs)
Abstract Current recommender systems mainly rely on correlation-based models, which limit their ability to uncover true causal relationships between user preferences and item suggestions. In this paper, we propose a hybrid model that combines a Bayesian network with a large language model (LLM) to e...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Springer
2025-08-01
|
| Series: | Discover Applied Sciences |
| Subjects: | |
| Online Access: | https://doi.org/10.1007/s42452-025-07551-8 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|