Enhanced Early Autism Screening: Assessing Domain Adaptation with Distributed Facial Image Datasets and Deep Federated Learning

This study offers a significant advancement in the area of early autism screening by offering diverse domain facial image datasets specifically designed for the detection of Autism Spectrum Disorder (ASD). It stands out as the pioneering effort to analyze two facial image datasets – Kaggle and YTUI...

Full description

Saved in:
Bibliographic Details
Main Authors: Shafiul Alam, Muhammad Mahbubur Rashid
Format: Article
Language:English
Published: IIUM Press, International Islamic University Malaysia 2025-01-01
Series:International Islamic University Malaysia Engineering Journal
Subjects:
Online Access:https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/3186
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841549950283939840
author Shafiul Alam
Muhammad Mahbubur Rashid
author_facet Shafiul Alam
Muhammad Mahbubur Rashid
author_sort Shafiul Alam
collection DOAJ
description This study offers a significant advancement in the area of early autism screening by offering diverse domain facial image datasets specifically designed for the detection of Autism Spectrum Disorder (ASD). It stands out as the pioneering effort to analyze two facial image datasets – Kaggle and YTUIA, using federated learning methods to adapt domain differences successfully. The federated learning scheme effectively addresses the integrity issue of sensitive medical information and guarantees a wide range of feature learning, leading to improved assessment performance across diverse datasets. By employing Xception as the backbone for federated learning, a remarkable accuracy rate of almost 90% is attained across all test sets, representing a significant enhancement of more than 30% for the different domain test sets. This work is a significant and remarkable contribution to early autism screening research due to its unique novel dataset, analytical methods, and focus on data confidentiality. This resource offers a comprehensive understanding of the challenges and opportunities in the field of ASD diagnosis, catering to both professionals and aspiring scholars. ABSTRAK: Kajian ini menawarkan kemajuan yang ketara dalam bidang saringan awal autisme dengan menyediakan pelbagai set data imej wajah yang direka khusus untuk pengesanan Gangguan Spektrum Autisme (ASD). Kajian ini menonjol sebagai usaha perintis untuk menganalisis dua set data imej wajah – Kaggle dan YTUIA, menggunakan kaedah pembelajaran teragih untuk menyesuaikan perbezaan domain dengan jayanya. Skim pembelajaran teragih ini berkesan menangani isu integriti maklumat perubatan sensitif dan menjamin pembelajaran ciri yang meluas, yang membawa kepada prestasi penilaian yang lebih baik merentas set data yang berbeza. Dengan menggunakan Xception sebagai tunjang pembelajaran teragih, kadar ketepatan yang luar biasa hampir 90% dicapai merentas semua set ujian, mewakili peningkatan ketara lebih daripada 30% untuk set ujian domain yang berbeza. Hasil kerja ini merupakan sumbangan penting dan luar biasa dalam penyelidikan saringan awal autisme kerana set data yang unik dan baharu, kaedah analisis yang digunakan, serta tumpuan kepada kerahsiaan data. Sumber ini menawarkan pemahaman yang menyeluruh mengenai cabaran dan peluang dalam bidang diagnosis ASD, sesuai untuk para profesional dan sarjana yang berminat.
format Article
id doaj-art-b41d31655181481e949ef744d06034d4
institution Kabale University
issn 1511-788X
2289-7860
language English
publishDate 2025-01-01
publisher IIUM Press, International Islamic University Malaysia
record_format Article
series International Islamic University Malaysia Engineering Journal
spelling doaj-art-b41d31655181481e949ef744d06034d42025-01-10T12:40:46ZengIIUM Press, International Islamic University MalaysiaInternational Islamic University Malaysia Engineering Journal1511-788X2289-78602025-01-0126110.31436/iiumej.v26i1.3186Enhanced Early Autism Screening: Assessing Domain Adaptation with Distributed Facial Image Datasets and Deep Federated LearningShafiul Alam0https://orcid.org/0009-0007-1653-8218Muhammad Mahbubur Rashid1https://orcid.org/0000-0002-3520-0657International Islamic University Malaysia International Islamic University Malaysia This study offers a significant advancement in the area of early autism screening by offering diverse domain facial image datasets specifically designed for the detection of Autism Spectrum Disorder (ASD). It stands out as the pioneering effort to analyze two facial image datasets – Kaggle and YTUIA, using federated learning methods to adapt domain differences successfully. The federated learning scheme effectively addresses the integrity issue of sensitive medical information and guarantees a wide range of feature learning, leading to improved assessment performance across diverse datasets. By employing Xception as the backbone for federated learning, a remarkable accuracy rate of almost 90% is attained across all test sets, representing a significant enhancement of more than 30% for the different domain test sets. This work is a significant and remarkable contribution to early autism screening research due to its unique novel dataset, analytical methods, and focus on data confidentiality. This resource offers a comprehensive understanding of the challenges and opportunities in the field of ASD diagnosis, catering to both professionals and aspiring scholars. ABSTRAK: Kajian ini menawarkan kemajuan yang ketara dalam bidang saringan awal autisme dengan menyediakan pelbagai set data imej wajah yang direka khusus untuk pengesanan Gangguan Spektrum Autisme (ASD). Kajian ini menonjol sebagai usaha perintis untuk menganalisis dua set data imej wajah – Kaggle dan YTUIA, menggunakan kaedah pembelajaran teragih untuk menyesuaikan perbezaan domain dengan jayanya. Skim pembelajaran teragih ini berkesan menangani isu integriti maklumat perubatan sensitif dan menjamin pembelajaran ciri yang meluas, yang membawa kepada prestasi penilaian yang lebih baik merentas set data yang berbeza. Dengan menggunakan Xception sebagai tunjang pembelajaran teragih, kadar ketepatan yang luar biasa hampir 90% dicapai merentas semua set ujian, mewakili peningkatan ketara lebih daripada 30% untuk set ujian domain yang berbeza. Hasil kerja ini merupakan sumbangan penting dan luar biasa dalam penyelidikan saringan awal autisme kerana set data yang unik dan baharu, kaedah analisis yang digunakan, serta tumpuan kepada kerahsiaan data. Sumber ini menawarkan pemahaman yang menyeluruh mengenai cabaran dan peluang dalam bidang diagnosis ASD, sesuai untuk para profesional dan sarjana yang berminat. https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/3186Artificail IntelligenceDeep learningAutism Spectrum DisorderData Federation
spellingShingle Shafiul Alam
Muhammad Mahbubur Rashid
Enhanced Early Autism Screening: Assessing Domain Adaptation with Distributed Facial Image Datasets and Deep Federated Learning
International Islamic University Malaysia Engineering Journal
Artificail Intelligence
Deep learning
Autism Spectrum Disorder
Data Federation
title Enhanced Early Autism Screening: Assessing Domain Adaptation with Distributed Facial Image Datasets and Deep Federated Learning
title_full Enhanced Early Autism Screening: Assessing Domain Adaptation with Distributed Facial Image Datasets and Deep Federated Learning
title_fullStr Enhanced Early Autism Screening: Assessing Domain Adaptation with Distributed Facial Image Datasets and Deep Federated Learning
title_full_unstemmed Enhanced Early Autism Screening: Assessing Domain Adaptation with Distributed Facial Image Datasets and Deep Federated Learning
title_short Enhanced Early Autism Screening: Assessing Domain Adaptation with Distributed Facial Image Datasets and Deep Federated Learning
title_sort enhanced early autism screening assessing domain adaptation with distributed facial image datasets and deep federated learning
topic Artificail Intelligence
Deep learning
Autism Spectrum Disorder
Data Federation
url https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/3186
work_keys_str_mv AT shafiulalam enhancedearlyautismscreeningassessingdomainadaptationwithdistributedfacialimagedatasetsanddeepfederatedlearning
AT muhammadmahbuburrashid enhancedearlyautismscreeningassessingdomainadaptationwithdistributedfacialimagedatasetsanddeepfederatedlearning