Two-Stage Clustering Approach for the Household Electricity Load Profiles by Fuzzy Logic and Neural Network Techniques

In this paper, household electricity load profile (LP) clustering problem is addressed. LP clustering analysis has been utilized as predicted end-user LPs for demand or supply management strategies to maintain the stability of the power systems. The consumption dynamics of the LPs are formed by the...

Full description

Saved in:
Bibliographic Details
Main Authors: Yavuz Eren, Uğur Buğra Etlik
Format: Article
Language:English
Published: Düzce University 2022-04-01
Series:Düzce Üniversitesi Bilim ve Teknoloji Dergisi
Subjects:
Online Access:https://dergipark.org.tr/tr/download/article-file/2027416
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, household electricity load profile (LP) clustering problem is addressed. LP clustering analysis has been utilized as predicted end-user LPs for demand or supply management strategies to maintain the stability of the power systems. The consumption dynamics of the LPs are formed by the combinations of technical and social factors. Hence, discovering the dynamic patterns of the LPs has been a challenging problem. For this problem, we have offered successive applications of Sugeno fuzzy-logic (SFL) and self-organizing map neural network (SOMNN) techniques. Firstly, the data sets of the LPs are clustered by fuzzy logic approach by the reference models which are generated with the common family-types per persons. Then, considering the extra input of the weighted occupancy profiles, SOMNN is performed to improve the clustering result according to the dataset. The proposed strategy has been simulated by MATLAB® and the related results are presented.
ISSN:2148-2446