Cross-scale covariance for material property prediction
Abstract A simulation can stand its ground against an experiment only if its prediction uncertainty is known. The unknown accuracy of interatomic potentials (IPs) is a major source of prediction uncertainty, severely limiting the use of large-scale classical atomistic simulations in a wide range of...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-01-01
|
Series: | npj Computational Materials |
Online Access: | https://doi.org/10.1038/s41524-024-01453-w |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract A simulation can stand its ground against an experiment only if its prediction uncertainty is known. The unknown accuracy of interatomic potentials (IPs) is a major source of prediction uncertainty, severely limiting the use of large-scale classical atomistic simulations in a wide range of scientific and engineering applications. Here we explore covariance between predictions of metal plasticity, from 178 large-scale (~108 atoms) molecular dynamics (MD) simulations, and a variety of indicator properties computed at small-scales (≤102 atoms). All simulations use the same 178 IPs. In a manner similar to statistical studies in public health, we analyze correlations of strength with indicators, identify the best predictor properties, and build a cross-scale “strength-on-predictors” regression model. This model is then used to estimate regression error over the statistical pool of IPs. Small-scale predictors found to be highly covariant with strength are computed using expensive quantum-accurate calculations and used to predict flow strength, within the statistical error bounds established in our study. |
---|---|
ISSN: | 2057-3960 |