Forecasting Blue and Green Water Footprint of Wheat Based on Single, Hybrid, and Stacking Ensemble Machine Learning Algorithms Under Diverse Agro-Climatic Conditions in Nile Delta, Egypt
The aim of this research is to develop and compare single, hybrid, and stacking ensemble machine learning models under spatial and temporal climate variations in the Nile Delta regarding the estimation of the blue and green water footprint (BWFP and GWFP) for wheat. Thus, four single machine learnin...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-11-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/16/22/4224 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|